Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Salient features useful for the accurate segmentation of masticatory muscles from minimum slices subsets of magnetic resonance images

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The masticatory muscles play a critical role in the mastication system and directly affect one’s ability to chew and smile. We describe a new approach for obtaining patient-specific human masticatory muscle surface renderings from magnetic resonance images (MRI) of the head. We determine the set of dominant slices, from training data, that together best represent the salient features of the three-dimensional muscle shape. Candidates for the dominant slices are identified by shape- and area-based criteria, and this is followed by fuzzy C-means clustering to determine the slices that are selected. Two-dimensional segmentation is carried out on these dominant slices on the test data, with shape-based interpolation then applied to construct accurate muscle surface renderings. Performance evaluation using a leave-one-out method results in average overlap indices of greater than 90%, indicating that there is consistency between the surface renderings and manual contour tracings provided by an expert radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noguchi N., Goto M.: Computer simulation system for orthognathic surgery. J. Orthod. Craniofac. Res. 6(1), 176–178 (2003)

    Article  Google Scholar 

  2. Wong T.Y., Fang J.J., Chung C.H., Huang J.S., Lee J.W.: Comparison of 2 methods of making surgical models for correction of facial asymmetry. Int. J. Oral Maxillofac. Surg. 63(2), 200–208 (2005)

    Article  Google Scholar 

  3. Gladilin E., Zachow S., Deuflhard P., Hege H.C.: Anatomy and physics-based facial animation for craniofacial surgery simulations. Med. Biol. Eng. Comput. 42(2), 167–170 (2004)

    Article  Google Scholar 

  4. Meehan M., Teschner M., Girod S.: Three-dimensional simulation and prediction of craniofacial surgery. J. Orthod. Craniofac. Res. 6(1), 103–107 (2003)

    Google Scholar 

  5. Brand R.W., Isselhard D.E.: Anatomy of orofacial structures. Mosby, St. Louis (1998)

    Google Scholar 

  6. Goto T.K., Tokumori K., Nakamura Y., Yahagi M., Yuasa K., Okamura K., Kanda S.: Volume changes in human masticatory muscles between jaw closing and opening. J. Dent. Res. 81(6), 428–432 (2002)

    Article  Google Scholar 

  7. Goto T.K., Nishida S., Yahagi M., Langenbach G.E.J., Nakamura Y., Tokumori K., Sakai S., Yabuuchi H., Yoshiura K.: Size and orientation of masticatory muscles in patients with mandibular laterognathism. J. Dent. Res. 85(6), 552–556 (2006)

    Article  Google Scholar 

  8. Farrugia M.E., Bydder G.M., Francis J.M., Robson M.D.: Magnetic resonance imaging of facial muscles. Clin. Radiol. 62(11), 1078–1086 (2007)

    Article  Google Scholar 

  9. Boom H.P.W., Van Sprosen P.H., Van Ginkel F.C., Van Schijndel R.A., Castelijns J.A., Tuinzing D.B.: A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI. Arch. Oral Biol. 53(3), 273–281 (2008)

    Article  Google Scholar 

  10. Gionhaku N., Lowe A.A.: Relationship between jaw muscle volume and craniofacial form. J. Dent. Res. 68(5), 805–809 (1989)

    Google Scholar 

  11. Huisinga-Fischer C.E., Vaandrager J.M., Zonneveld F.W., Prahl-Andersen B.: Precision and accuracy of CT-based measurements of masticatory uscles in patients with hemifacial microsomia. Dentomaxillofac Radiol. 33(1), 12–16 (2004)

    Article  Google Scholar 

  12. Liu J., Nowinski W.L.: A hybrid approach to shape-based interpolation of stereotactic atlases of the human brain. Neuroinformatics 4(2), 177–198 (2006)

    Article  Google Scholar 

  13. Ng, H.P., Ong, S.H., Foong, K.W.C., Goh, P.S., Nowinski, W.L.: Knowledge-driven 3D extraction of the masseter from MR data. IEEE Engineering in Medicine and Biology Conference, pp. 5294–5297 (2006)

  14. Bezdek J.C.: Pattern recognition with fuzzy objective function algorithm. Plenum Press, New York (1981)

    Google Scholar 

  15. Nowinski W.L., Liu J., Thirunavuukarasuu A.: Quantification of three-dimensional inconsistency of the subthalamic nucleus in the Schaltenbrand-Wahren brain atlas. Stereot. Funct. Neuros. 84(1), 46–55 (2006)

    Article  Google Scholar 

  16. Leemput V.K., Maes F., Vandermeulen D., Suetens P.: Automated model-based tissue classification of MR images of the brain. IEEE. Trans. Med. Imaging. 18(10), 897–908 (1999)

    Article  Google Scholar 

  17. Fukunaga K., Hummels D.M.: Leave-one-out procedures for nonparametric error estimates. IEEE Trans. PAMI. 11(4), 421–423 (1989)

    Google Scholar 

  18. Ng, H.P., Ong, S.H., Foong, K.W.C., Goh, P.S., Nowinski, W.L.: Automatic segmentation of muscles of mastication from magnetic resonance images using prior knowledge 2006. In: International conference on pattern recognition, pp 968–971 (2006)

  19. Ng H.P., Ong S.H., Hu Q.M., Foong K.W.C., Goh P.S., Nowinski W.L.: Muscles of mastication model-based MR image segmentation. Int. J. Comput. Assist. Radiol. Surg. 1(3), 137–148 (2006)

    Article  Google Scholar 

  20. Xu C., Prince J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image. Proc. 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Falcao A.X., Udupa J.K., Miyazawa F.K.: An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans. Med. Imaging. 19(1), 55–62 (2000)

    Article  Google Scholar 

  22. Van Ginneken B., Frangi A.F., Staal J.J., Ter Haar Romeny B.M., Viergever M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21(8), 924–933 (2002)

    Article  Google Scholar 

  23. Beichel R., Bischof H., Leberi F., Sonka M.: Robust active appearance models and their application to medical image analysis. IEEE Trans. Med. Imaging 24(9), 1151–1169 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, H.P., Ong, S.H., Huang, S. et al. Salient features useful for the accurate segmentation of masticatory muscles from minimum slices subsets of magnetic resonance images. Machine Vision and Applications 21, 449–467 (2010). https://doi.org/10.1007/s00138-008-0172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0172-9

Keywords

Navigation