Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Classification of honeybee pollen using a multiscale texture filtering scheme

  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract.

People are interested in the composition of honeybee pollen due to its nutritional value and therapeutic benefits. Its palynological composition depends on the local flora surrounding the beehive, and its identification is currently done manually using optical microscopy. This procedure is tedious and expensive in systematic application and is unable to automatically separate pollen loads of different species of plants. We present an automatic methodology to discriminate pollen loads based on texture image classification. Texture features are generated using a multiscale filtering scheme. A statistical evaluation of the algorithm is provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serra Bonuehi J, Escol Jord R (1997) Nutrient composition and microbiological quality. J Agric Food Chem 45:725-732

    Article  Google Scholar 

  2. Carrión P, Cernadas E, Sá-Otero P, Díaz-Losada E (2002) Could the pollen origin be determined using computer vision? An experimental study. In: Proc. IASTED international conference on visualization, imaging, and image processing, pp 74-79

  3. Crane E (1979) Honey. Morrison and Gibbs, London

  4. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math XLI:909-996

    MathSciNet  Google Scholar 

  5. Díaz-Losada E, Fernández-Gómez E, Alvarez-Carro C, Saa-Otero MP (1996) Aportación al conocimiento del origen floral y composición química del polen apícola de Galicia (Spain). Boletin de la Real Sociedad Espa nola de Historia Natural 92(1-4):195-202

  6. Díaz-Losada E, González-Porto AV, Saa-Otero MP (1998) Étude de la couleur du pollen apicole recueilli par Apis mellifer L. en nord-ouest d Espagne. (Galice). Acta Botanica Gallica 145(1):39-48

    Google Scholar 

  7. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley, New York

  8. Erdtman G (1960) The acetolysis method. Svensk Bot Tidskr (54):561-564

    Google Scholar 

  9. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Man Cybern 3(6):610-621

    Google Scholar 

  10. Haralick RM, Shapiro L (1993) Computer and robot vision. Addison-Wesley, Reading, MA

  11. Hidalgo MI, Bootello ML (1990) About some physical characteristics of the pollen loads collected by Apis mellifera L. Apicoltura 6:179-191

    Google Scholar 

  12. Hodges D (1984) The pollen loads of the honeybee. In: Proc. meeting of the Bee Research Association, London, p 48

  13. Kuncheva LI (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Pattern Anal Mach Intell 24(2):281-286

    Article  Google Scholar 

  14. Laine A, Fan J (1993) Texture classification by wavelet packet signatures. IEEE Trans Pattern Anal Mach Intell 15(11):1186-1191

    Article  Google Scholar 

  15. Laws KI (1980) Rapid texture identification: image processing for missile guidance. In: Proc SPIE 238:376-380

  16. Li P, Flenley JR (1999) Pollen texture identification using neural networks. Grana 38:59-64

    Article  Google Scholar 

  17. Mallat S (1989) A theory for multiresolution signal descomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674-693

    Article  MATH  Google Scholar 

  18. Sintes Prost J (1987) Virtudes curativas de la miel y del polen. Sintes S.A., Barcelona

  19. Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recog Lett 15:1119-1125

    Article  Google Scholar 

  20. Sá-Otero MP, Díaz-Losada E, González-Porto AV (2001) Relación categorizada de especies de la flora gallega (NO de Espa na) que Apis Melifera L. utiliza como fuente de polen. Boletin de la Real Sociedad Espa nola de Historia Natural 96(3-4):81-89

  21. Saa-Otero MP, Díaz-Losada E, Fernández-Gómez E (2000) Analysis of fatty acids, proteins and ethereol extract in honeybee pollen. Grana 39:175-181

    Article  Google Scholar 

  22. Siew LH, Hodgson RM, Wood EJ (1989) Texture measures for carpet wear assessment. IEEE Trans Pattern Anal Mach Intell 10(1):92-104

    Article  Google Scholar 

  23. Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. PWS Publishing, San Francisco

  24. Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic, Boston

  25. Unser M, Eden M (1989) Multiresolution feature extraction and selection for texture segmentation. IEEE Trans Pattern Anal Mach Intell 11(7):717-728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carrión.

Additional information

Received: 26 January 2003, Accepted: 2 March 2004, Published online: 13 July 2004

Correspondence to: P. Carrión

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrión, P., Cernadas, E., Gálvez, J.F. et al. Classification of honeybee pollen using a multiscale texture filtering scheme. Machine Vision and Applications 15, 186–193 (2004). https://doi.org/10.1007/s00138-004-0150-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-004-0150-9

Keywords:

Navigation