Abstract.
People are interested in the composition of honeybee pollen due to its nutritional value and therapeutic benefits. Its palynological composition depends on the local flora surrounding the beehive, and its identification is currently done manually using optical microscopy. This procedure is tedious and expensive in systematic application and is unable to automatically separate pollen loads of different species of plants. We present an automatic methodology to discriminate pollen loads based on texture image classification. Texture features are generated using a multiscale filtering scheme. A statistical evaluation of the algorithm is provided and discussed.
Similar content being viewed by others
References
Serra Bonuehi J, Escol Jord R (1997) Nutrient composition and microbiological quality. J Agric Food Chem 45:725-732
Carrión P, Cernadas E, Sá-Otero P, Díaz-Losada E (2002) Could the pollen origin be determined using computer vision? An experimental study. In: Proc. IASTED international conference on visualization, imaging, and image processing, pp 74-79
Crane E (1979) Honey. Morrison and Gibbs, London
Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math XLI:909-996
Díaz-Losada E, Fernández-Gómez E, Alvarez-Carro C, Saa-Otero MP (1996) Aportación al conocimiento del origen floral y composición química del polen apícola de Galicia (Spain). Boletin de la Real Sociedad Espa nola de Historia Natural 92(1-4):195-202
Díaz-Losada E, González-Porto AV, Saa-Otero MP (1998) Étude de la couleur du pollen apicole recueilli par Apis mellifer L. en nord-ouest d Espagne. (Galice). Acta Botanica Gallica 145(1):39-48
Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley, New York
Erdtman G (1960) The acetolysis method. Svensk Bot Tidskr (54):561-564
Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Man Cybern 3(6):610-621
Haralick RM, Shapiro L (1993) Computer and robot vision. Addison-Wesley, Reading, MA
Hidalgo MI, Bootello ML (1990) About some physical characteristics of the pollen loads collected by Apis mellifera L. Apicoltura 6:179-191
Hodges D (1984) The pollen loads of the honeybee. In: Proc. meeting of the Bee Research Association, London, p 48
Kuncheva LI (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Pattern Anal Mach Intell 24(2):281-286
Laine A, Fan J (1993) Texture classification by wavelet packet signatures. IEEE Trans Pattern Anal Mach Intell 15(11):1186-1191
Laws KI (1980) Rapid texture identification: image processing for missile guidance. In: Proc SPIE 238:376-380
Li P, Flenley JR (1999) Pollen texture identification using neural networks. Grana 38:59-64
Mallat S (1989) A theory for multiresolution signal descomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674-693
Sintes Prost J (1987) Virtudes curativas de la miel y del polen. Sintes S.A., Barcelona
Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recog Lett 15:1119-1125
Sá-Otero MP, Díaz-Losada E, González-Porto AV (2001) Relación categorizada de especies de la flora gallega (NO de Espa na) que Apis Melifera L. utiliza como fuente de polen. Boletin de la Real Sociedad Espa nola de Historia Natural 96(3-4):81-89
Saa-Otero MP, Díaz-Losada E, Fernández-Gómez E (2000) Analysis of fatty acids, proteins and ethereol extract in honeybee pollen. Grana 39:175-181
Siew LH, Hodgson RM, Wood EJ (1989) Texture measures for carpet wear assessment. IEEE Trans Pattern Anal Mach Intell 10(1):92-104
Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. PWS Publishing, San Francisco
Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic, Boston
Unser M, Eden M (1989) Multiresolution feature extraction and selection for texture segmentation. IEEE Trans Pattern Anal Mach Intell 11(7):717-728
Author information
Authors and Affiliations
Corresponding author
Additional information
Received: 26 January 2003, Accepted: 2 March 2004, Published online: 13 July 2004
Correspondence to: P. Carrión
Rights and permissions
About this article
Cite this article
Carrión, P., Cernadas, E., Gálvez, J.F. et al. Classification of honeybee pollen using a multiscale texture filtering scheme. Machine Vision and Applications 15, 186–193 (2004). https://doi.org/10.1007/s00138-004-0150-9
Issue Date:
DOI: https://doi.org/10.1007/s00138-004-0150-9