Abstract
Diurnal samples of PM2.5 and PM2.5–10 were taken in an urban background area in Zabrze (Upper Silesia in southern Poland) in the winter (January–March) and summer (July–September) of 2009. The samples were analyzed for carbon (organic and elemental), water soluble ions (Na+, NH4 +, K+, Mg2+, Ca2+, F−, Cl−, NO3 −, PO4 3−, SO4 2−) and concentrations of 27 elements by using, respectively, a Behr C50 IRF carbon analyzer, a Herisau Metrohm AG ion chromatograph, and a PANalitycal EPSILON 5 X-ray fluorescence spectrometer. To perform the mass closure calculations for both dust fractions in the two periods, the particulate matter (PM) chemical components were categorized into organic matter, elemental carbon, secondary inorganic aerosol, crustal matter, marine components and unidentified matter. The chemical composition of the two dust fractions and the element enrichment coefficients in the two seasons, referred to proper emission profiles, proved about 80% of PM2.5 and more than 50% (in winter 65%) of PM2.5–10 mass coming from anthropogenic sources, mainly from fuel combustion and specific municipal emission shaping the winter emission of ambient dust in the area.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alastuey A, Querol X, Rodríguez S, Plana F, Lopez-Soler A, Ruiz C, Mantilla E (2004) Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmos Environ 38:4979–4992
Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T (2009) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ 43:1650–1659
Chow JC (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manag Assoc 45:320–382
Dabek-Zlotorzynska E, Dann TF, Martinelango PK, Celo V, Brook JR, Mathieu D, Ding L, Austin CC (2011) Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: methodology and PM2.5 chemical composition for the years 2003–2008. Atmos Environ 45:673–686
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe
EMEP (2009) Transboundary particulate matter in Europe: status report 4/2009
Englert N (2004) Fine particles and human health—a review of epidemiological studies. Toxicol Lett 149:235–242
Han S, Youn JS, Jung YW (2011) Characterization of PM10 and PM2.5 source profiles for resuspended road dust collected using mobile sampling methodology. Atmos Environ 45:3343–3351
Hinds WC (1998) Aerosol technology. Properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York
Houthuijs D, Breugelmans O, Hoek G, Vaskövi É, Miháliková E, Pastuszka JS, Jirik V, Sachelarescu S, Lolova D, Meliefste K, Uzunova E, Marinescu C, Volf J, de Leeuw F, van de Wiel H, Fletcher T, Lebret E, Brunekreef B (2001) PM10 and PM2.5 concentrations in Central and Eastern Europe: results from the Cesar study. Atmos Environ 35:2757–2771
Hüeglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–665
Juda-Rezler K, Reizer M, Oudinet J-P (2011) Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: the case of wintertime 2006. Atmos Environ 45:6557–6566
Kim M-K, Jo WK (2006) Elemental composition and source characterization of airborne PM10 at residences with relative proximities to metal-industrial complex. Int Arch Occup Environ Health 80:40–50
Klejnowski K, Krasa A, Rogula W (2007) Seasonal variability of concentrations of total suspended particles (TSP) as well as PM10, PM2.5 and PM1 modes in Zabrze, Poland. Arch Environ Prot 33(3):15–29
Klejnowski K, Rogula-Kozłowska W, Krasa A (2009) Structure of atmospheric aerosol in Upper Silesia (Poland)—contribution of PM2.5 to PM10 in Zabrze, Katowice and Częstochowa in 2005–2007. Arch Environ Prot 35(2): 3–13
Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99:1347–1370
Mira-Salama D, Grüning C, Jensen NR, Cavalli P, Putaud J-P, Larsen BR, Raes F, Coe H (2008) Source attribution of urban smog episodes caused by coal combustion. Atmos Res 88:294–304
Pastuszka JS, Wawroś A, Talik E, Paw U (2003) Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. Sci Total Environ 309:237–251
Pastuszka JS, Rogula-Kozłowska W, Zajusz-Zubek E (2010) Characterization of PM10 and PM2,5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ Monit Assess 168:613–627
Perez N, Pey J, Querol X, Alastuey A, Lopez JM, Viana M (2008) Partitioning of major and trace components in PM10-PM2,5-PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691
Pey J, Querol X, Alastuey A, Rodríguez S, Putaud JP, Van Dingenen R (2009) Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. Atmos Environ 43:4407–4415
Putaud J-P, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Hüglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbush TAJ, Löschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology—3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320
Rogula-Kozłowska W, Pastuszka JS, Talik E (2008) Influence of vehicular traffic on concentration and particle surface composition of PM10 and PM2.5 in Zabrze, Poland. Polish J Environ Stud 17:539–548
Sillanpää M, Hillamo R, Saarikoski S, Frey A, Pennanen A, Makkonen U, Spolnik Z, Van Grieken R, Braniš M, Brunekreef B, Chalbot MC, Kuhlbusch T, Sunyer J, Kerminen VM, Kulmala M, Salonen RO (2006) Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmos Environ 40:212–223
US EPA (1999) Compendium of methods for the determination of inorganic compounds in ambient air. Compendium method IO-3.3: determination of metals in ambient particulate matter using X-ray fluorescence (XRF) spectroscopy, Cincinnati
Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius W, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. Aerosol Sci 39:827–849
Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Ac 59(7):1217–1232
Zwoździak J, Jadczyk P, Kucharczyk J (2001) Seasonal variability of the mutagenicity of airborne particles in the town center. Aerosol Sci 32:409–432
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P. et al. A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland. Bull Environ Contam Toxicol 88, 722–729 (2012). https://doi.org/10.1007/s00128-012-0533-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00128-012-0533-y