Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Structural traces of past experience in the cerebral cortex

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

It is widely assumed that changes in the connections between neurons mediate the integration and storage of information in the brain and thereby underlie our ability to learn and remember. In particular, long-term memory is thought to rely on a structural reorganisation of neuronal circuits, but the proof for such a mechanism in the complex mammalian brain remains elusive. Recent advances in scientists' ability to follow structural dynamics of neuronal networks in the intact brain in vivo by means of 2-photon laser scanning microscopy has provided new insight into how information about new experiences might be stored in brain circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ebbinghaus H (1885) Ueber das Gedaechtnis. Duncker und Humblot, Leipzig

  2. Castellucci V, Kandel ER (1976) Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194:1176–1178

    Article  CAS  PubMed  Google Scholar 

  3. Castellucci VF, Carew TJ, Kandel ER (1978) Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science 202:1306–1308

    Article  CAS  PubMed  Google Scholar 

  4. Kandel ER, Schwartz JH (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433–443

    Article  CAS  PubMed  Google Scholar 

  5. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    CAS  PubMed  Google Scholar 

  6. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  7. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  8. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  9. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  10. Markham JA, Greenough WT (2004) Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol 1:351–363

    Article  PubMed  Google Scholar 

  11. Bruel-Jungerman E, Davis S, Laroche S (2007) Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13:492–505

    Article  PubMed  Google Scholar 

  12. Bailey CH, Kandel ER (1993) Structural changes accompanying memory storage. Annu Rev Physiol 55:397–426

    Article  CAS  PubMed  Google Scholar 

  13. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  CAS  PubMed  Google Scholar 

  14. De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49:861–875

    Article  PubMed  Google Scholar 

  15. Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  CAS  PubMed  Google Scholar 

  16. Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  CAS  PubMed  Google Scholar 

  17. Majewska AK, Newton JR, Sur M (2006) Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 26:3021–3029

    Article  CAS  PubMed  Google Scholar 

  18. Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49:877–887

    Article  CAS  PubMed  Google Scholar 

  19. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  20. Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983

    Article  CAS  PubMed  Google Scholar 

  21. Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hubener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1167

    Article  CAS  PubMed  Google Scholar 

  22. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M (2009) Experience leaves a lasting structural trace in cortical circuits. Nature 457:313–317

    Article  CAS  PubMed  Google Scholar 

  23. Wiesel TN, Hubel DH (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    CAS  PubMed  Google Scholar 

  24. Giffin F, Mitchell DE (1978) The rate of recovery of vision after early monocular deprivation in kittens. J Physiol 274:511–537

    CAS  PubMed  Google Scholar 

  25. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M (2006) Prior experience enhances plasticity in adult visual cortex. NatNeurosci 9:127–132

    CAS  Google Scholar 

  26. Kind PC, Mitchell DE, Ahmed B, Blakemore C, Bonhoeffer T, Sengpiel F (2002) Correlated binocular activity guides recovery from monocular deprivation. Nature 416:430–433

    Article  CAS  PubMed  Google Scholar 

  27. Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9:1117–1124

    Article  CAS  PubMed  Google Scholar 

  28. Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386

    Article  CAS  PubMed  Google Scholar 

  29. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  Google Scholar 

  30. DeBello WM, Feldman DE, Knudsen EI (2001) Adaptive axonal remodeling in the midbrain auditory space map. J Neurosci 21:3161–3174

    CAS  PubMed  Google Scholar 

  31. Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328

    Article  CAS  PubMed  Google Scholar 

  32. Linkenhoker BA, der Ohe CG, Knudsen EI (2005) Anatomical traces of juvenile learning in the auditory system of adult barn owls. Nat Neurosci 8:93–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Thomas Mrsic-Flogel and Mark Hübener for comments on the manuscript. This work was supported by EMBO and the Welcome Trust. The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja B. Hofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, S.B. Structural traces of past experience in the cerebral cortex. J Mol Med 88, 235–239 (2010). https://doi.org/10.1007/s00109-009-0560-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0560-2

Keywords

Navigation