Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Unique solvability of a stationary radiative–conductive heat transfer problem in a semitransparent body with absolutely black inclusions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider a stationary boundary value problem describing a radiative–conductive heat transfer in a semitransparent body with absolutely black inclusions. To describe the radiative transfer, the integro-differential radiative transfer equation is used. We do not take into account the dependence of the radiation intensity and the properties of semitransparent materials on the radiation frequency. We proved at the first time the unique solvability of this problem. Besides, we proved the comparison theorems and established the results on improving the properties of solutions with increasing exponents of data summability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sparrow, E.M., Cess, R.D.: Radiation Heat Transfer. Hemisphere, New York (1978)

    Google Scholar 

  2. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Taylor and Francis-Hemishpere, Washington (2001)

    Google Scholar 

  3. Ozisik, M.N.: Radiative Transfer and Interactions with Conduction and Convection. Willey, New York (1973)

    Google Scholar 

  4. Modest, F.M.: Radiative Heat Transfer. Academic Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Tikhonov, A.N.: On Volterra type functional equations and their applications to some problems of mathematical physics [in Russian]. Bull. MGU Sec. A Ser. Mat. Mekh. I(8), 1–25 (1938)

  6. Amosov, A.A.: A positive solution of an elliptic equation with nonlinear integral boundary condition of the radiation type. Math. Notes 22(1), 555–561 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Forste, J.: Steady flow of incompressible volatile fluid under action of radiation. ZAMM 57(4), 265–267 (1977)

    MathSciNet  Google Scholar 

  8. Kuraev, G.N.: The problem of stationary free convection under non-linear boundary conditions [in Russian]. Zh. vych. Mat. i mat. Fizz. 18(3), 784–789 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Amosov, A.A.: The solvability of a problem of radiation heat transfer. Sov. Phys. Dokl. 24(4), 261–262 (1979)

    Google Scholar 

  10. Amosov, A.A.: The limit connection between two problems of radiation heat transfer. Sov. Phys. Dokl. 24(6), 439–441 (1979)

    Google Scholar 

  11. Amosov, A.A.: Solvability of the problem of radiation heat transfer according to the Stefan–Boltzmann law, [in Russian]. Vestn. MGU Ser. Vych. Mat. Kibern. 3, 18–26 (1980)

    MATH  Google Scholar 

  12. Amosov, A.A.: Some Mathematical Problems of the Theory of Radiation Heat Transfer [in Russian], Ph. D. Thesis, Moscow (1980)

  13. Amosov, A. A.: Well-posedness “in the large” of initial-and-boundary-value problems for the system of dynamical equations of a viscous radiating gas, Sov. Phys., Dokl. 30 (1985) 129–131

  14. Kuraev, G. N.: On the solvability of the problem of stationary heat convection with radiant convective heat exchange on the boundary, U.S.S.R. Comput. Math. Math. Phys. 26(1), 184–188 (1986)

  15. Perret, C., Witomski, P.: Equation de la chaleur et reflections multiples. Ann. Inst. H. Poincaré Anal. Non Lineare 8(6), 677–689 (1991)

  16. da Gama, R.M.S.: Existence, uniqueness and construction of the solution of the energy transfer problem in a rigid and non-convex blackbody. Z. Angew. Math. Phys. 42(3), 334–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. da Gama, R.M.S.: An alternative mathematical modelling for coupled conduction/radiation energy transfer phenomenon in a system of \(n\) grey bodies surrounded by a vacuum. Int. J. Non-Linear Mech. 30(4), 433–447 (1995)

    Article  MATH  Google Scholar 

  18. Kelley, C.: Existence and uniqueness of solutions of nonlinear systems of conductive radiative heat transfer equations. Transp. Theory Stat. Phys. 25(2), 249–260 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qatanani, N.: Loesungsverfahren und analysis der integral-gleichung fuer das hohlraum-strahlungs-problem, Ph. D. Thesis. University of Stuttgart (1996)

  20. Tiihonen, T.: Stefan–Boltzmann radiation on non-convex surfaces. Math. Methods Appl. Sci. 20, 47–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tiihonen, T.: A nonlocal problem arising from heat radiation in non-convex surfaces. Eur. J. Appl. Math. 8, 403–416 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laitinen, M., Tiihonen, T.: Heat transfer in conducting and radiating bodies. Appl. Math. Lett. 10(5), 5–8 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gergo, L., Stoyan, G.: On a mathematical model of a radiating, viscous, heatconducting fluid: Remarks on a paper by. J. Förste, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 77(5), 367–375 (1997)

    Article  MATH  Google Scholar 

  24. Laitinen, M.T., Tiihonen, T.: Integro - differential equation modelling heat transfer in conducting, radiating and semitransparent materials. Math. Methods Appl. Sci. 21, 375–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Metzger, M.: Existence for a time-dependent heat equation with non-local radiation terms. Math. Methods Appl. Sci. 22, 1101–1119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Laitinen, M., Tiihonen, T.: Conductive-radiative heat transfer in grey materials. Quart. Appl. Math. 59, 737–768 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Laitinen, Mika T:, Asymptotic analysis of conductive-radiative heat transfer. Asymptot. Anal. 29, 323–342 (2002)

  28. da Gama, R.M.S.: On the conduction/radiation heat transfer problem in a body with wavelength-dependent properties. Appl. Math. Model. 28(9), 795–816 (2004)

    Article  MATH  Google Scholar 

  29. Thompson, M., Segatto, C., De Vilhena, M.T.: Existence theory for the solution of a stationary nonlinear conductive-radiative heat-transfer problem in three space dimensions. Transp. Theory Stat. Phys. 33(5–7), 563–576 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Amosov, A.A.: Global solvability of nonlinear nonstationary problem with nonlocal boundary condition of radiative heat transfer type. Differ. Equ. 41(1), 96–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qatanani, N.: Analysis of the heat equation with non-local radiation terms in a non-convex diffuse and grey surfaces. Eur. J. Sci. Rec. 15(2), 245–254 (2006)

    Google Scholar 

  32. Qatanani, N.: Qualitative analysis of the radiative energy transfer model. Eur. J. Sci. Rec. 17(3), 379–391 (2007)

    Google Scholar 

  33. Qatanani, N., Barham, R., Heeh, Q.: Existence and uniqueness of the solution of the coupled conduction-radiation energy transfer on diffuse-grey surfaces, Surv. Math. Appl. (2) (2007) 43–58, electronic only

  34. Qatanani, N.M., Heeh, Q.M.: On existence and uniqueness theorem concerning time-dependent heat transfer model. Appl. Appl. Math. 2(3), 235–253 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Thompson, M., De Vilhena, M.T., Bodmann, B.E.J.: Existence theory for radiative flows. Transp. Theory Stat. Phys. 37(2–4), 307–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Druet, P.-E.: Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in \(L^p\) (\(p\ge 1\)). WIAS. Preprint No. 1240, (2009)

  37. Druet, P.-E.: Existence for the stationary MHD equations coupled to heat transfer with nonlocal radiation effects. Czechoslovak Math. J. 59, 791–825 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Druet, P.-E.: Existence of weak solution to time-dependent MHD equations coupled to heat transfer with nonlocal radiation boundary conditions. Nonlinear Anal. Real World Appl. 10, 2914–2936 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Druet, P.-E.: Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side. Appl. Math. 55(2), 111–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Amosov, A.A.: Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency. J. Math. Sci. 164(3), 309–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Amosov, A.A.: Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency. J. Math. Sci. 165(1), 1–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Amosov, A.A.: Nonstationary radiative-conductive heat transfer problem in a periodic system of grey heat shields. J. Math. Sci. 169(1), 1–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Druet, P.-E., Philip, P.: Noncompactness of integral operators modeling diffuse-gray radiation in polyhedral and transient settings. Integr. Equ. Oper. Theory 69(1), 101–11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sauter, E., De Azevedo, F.S., Thompson, M.: Existence theory for one-dimensional quasilinear coupled conductive-radiative flows. Appl. Math. Comput. 233, 545–556 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Kovtanyuk, A.E., Chebotarev, A.Y.: Steady-state problem of complex heat transfer. Comput. Math. Math. Phys. 54(4), 719–726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kovtanyuk, A.E., Chebotarev, A.Y., Botkin, N.D., Hoffmann, K.-H.: Solvability of \(P_1\) approximation of a conductive-radiative heat transfer problem. Appl. Math. Comput. 249, 247–252 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Kovtanyuk, A.E., Chebotarev, A.Y.: Stationary free convection problem with radiative heat exchange. Differ. Equ. 50(12), 1592–1599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kovtanyuk, A.E., Chebotarev, A.Y., Botkin, N.D., Hoffmann, K.-H.: The unique solvability of a complex 3d heat transfer problem. J. Math. Anal. Appl. 409, 808–815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Grenkin, G.V., Chebotarev, A.Y.: A Nonstationary problem of complex heat transfer. Comput. Math. Math. Phys. 54(11), 1737–1747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kovtanyuk, A.E., Chebotarev, A.Y., Botkin, N.D., Hoffmann, K.-H.: Unique solvability a steady-state complex heat transfer model. Commun. Nonlinear Sci. Numer. Simul. 20, 776–784 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Amosov, A.: Solvability of a nonstationary problem of radiative - conductive heat transfer in a system of semitransparent bodies, In: Integral Methods in Sci. and Eng. Theoretical and Computat. Advances. Constanda Christian, Kirsch Andreas (Eds.). Basel: Birkhauser (2015) 1–13

  52. Grenkin, G.V., Chebotarev, A.Y.: Nonstationary problem of free convection with radiative heat transfer. Comput. Math. Math. Phys. 56(2), 278–285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Amosov, A.: Unique solvability of a nonstationary Problem of radiative - conductive heat exchange in a system of semitransparent bodies. Russian J. Math. Phys. 23(3), 309–334 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chebotarev, A.Y., Grenkin, G.V., Kovtanyuk, A.E.: Inhomogeneous steady-state problem of complex heat transfer. ESAIM: M2AN 51, 2511–2519 (2017)

  55. Amosov, A.A.: Unique solvability of stationary radiative - conductive heat transfer problem in a system of semitransparent bodies. J. Math. Sci. (United States) 224(5), 618–646 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Amosov, A.A.: Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation. Comput. Math. Math. Phys. 57(3), 515–540 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Amosov, A.A.: Nonstationary problem of complex heat transfer in a system of semitransparent bodies with boundary-value conditions of diffuse reflection and refraction of radiation. J. Math. Sci. (United States) 233(6), 777–806 (2018)

    Article  MATH  Google Scholar 

  58. Ghattassi, M., Roche, J.R., Schmitt, D.: Existence and uniqueness of a transient state for the coupled radiative-conductive heat transfer problem. Comput. Math. Appl. 75(11), 3918–3928 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Chebotarev, A.Y., Grenkin, G.V., Kovtanyuk, A.E., Botkin, N.D., Hoffmann, K.-H.: Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions. Commun. Nonlinear Sci. Numer. Simul. 57, 290–298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Grenkin, G.V., Chebotarev, A.Y.: Stability of stationary solutions of the radiative heat transfer equations. Comput. Math. Math. Phys. 58(9), 1420–1425 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Grenkin, G.V., Chebotarev, A.Y.: Inverse problem for equations of complex heat transfer. Comput. Math. Math. Phys. 59(8), 1361–1371 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kolobov, A.G., Pak, T.V., Chebotarev, A.Y.: Stationary problem of radiative heat transfer with Cauchy boundary conditions. Comput. Math. Math. Phys. 59(7), 1199–1203 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Chebotarev, A.Y., Kovtanyuk, A.E., Botkin, N.D.: Problem of radiation heat exchange with boundary conditions of the Cauchy type. Commun. Nonlinear Sci. Numer. Simul. 75, 262–269 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Bakhvalov, N.S.: Averaging of the heat transfer process in periodic media in the presence of radiation. Differ. Uravn. 17, 1765–1773 (1981)

    MathSciNet  Google Scholar 

  65. Amosov, A.A., Gulin, V.V.: Semidiscrete and asymptotic approximations in the heat transfer problem in a system of heat shields under radiation [in Russian]. MPEI Bull. 6, 5–15 (2008)

    Google Scholar 

  66. Allaire, G., El Ganaoui, K.: Homogenization of a conductive and radiative heat transfer problem. Multiscale Model. Simul. 7(3), 1148–1170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Amosov, A.A.: Semidiscrete and asymptotic approximations for the nonstationary radiative-conductive heat transfer problem in a periodic system of grey heat shields. J. Math. Sci. 176(3), 361–408 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Allaire, G., Habibi, Z.: Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete Contin. Dyn. Syst. Ser. B 18(1), 1–36 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Allaire, G., Habibi, Z.: Homogenization of a conductive, convective, and radiative heat transfer problem in a heterogeneous domain. SIAM J. Math. Anal. 45(3), 1136–1178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. Amosov, A.A., Maslov, D.A.: Two stationary radiative-conductive heat transfer problems in a system of two-dimensional plates. J. Math. Sci. 210(5), 3–14 (2015)

    Article  MATH  Google Scholar 

  71. Amosov, A.A., Maslov, D.A.: Semidiscrete approximations for the stationary radiative-conductive heat transfer problem in the two-dimensional system of plates. Russ. J. Numer. Anal. Math. Model. 31(1), 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  72. Amosov, Andrey A.: Asymptotic approximations for the stationary radiative-conductive heat transfer problem in a two-dimensional system of plates. Russ. J. Numer. Anal. Math. Model. 32(3), 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  73. Amosov, A.A., Krymov, N.E.: On a nonstandard boundary value problem arising in homogenization of complex heat transfer problems. J. Math. Sci. (United States) 244(3), 357–377 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  74. Amosov, A.A., Krymov, N.E.: Discrete and asymptotic approximations for one stationary radiative-conductive heat transfer problem. J. Numer. Anal. Math. Model. 35(3), 127–141 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  75. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  76. Amosov, A.A.: Radiative transfer equation with diffuse reflection and refraction conditions in a system of bodies with piecewise smooth boundaries. J. Math. Sci. (United States) 216(2), 155–216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  77. Amosov, A.A.: Radiative transfer equation with Fresnel reflection and refraction conditions in a system of bodies with piecewise smooth boundaries. J. Math. Sci. (United States) 219(6), 821–849 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Amosov, A.A.: Boundary value problems for the radiation transfer equation with reflection and refraction conditions. Tamara Rozhkovskaya Publisher, Novosibirsk (2017) ([in Russian])

  79. Křižek, M., Liu, L.: On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type. Appl. Math. 24(1), 97–107 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The results were obtained in the framework of the state assignments of the Russian Ministry of Education and Science (project FSWF-2020-0022)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Amosov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosov, A. Unique solvability of a stationary radiative–conductive heat transfer problem in a semitransparent body with absolutely black inclusions. Z. Angew. Math. Phys. 72, 104 (2021). https://doi.org/10.1007/s00033-021-01535-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01535-5

Keywords

Mathematics Subject Classification

Navigation