Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quantum Audio Steganalysis Based on Quantum Fourier Transform and Deutsch–Jozsa Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In recent years, researchers have considered quantum steganography and its various methods with the development and progress of research in computation theory and quantum signals processing. The destructive use of quantum steganography methods to establish illegal covert communications is rising, so it is essential to introduce ways to detect hidden data in a quantum medium. Accordingly, this paper presents a frequency-based universal audio steganalysis approach to detecting quantum steganography. First, based on the quantum Fourier transform, the characteristic of the quantum spectrum centroid (QSC) was computed, and its circuit network was implemented to extract feature vectors. The proposed method classifies quantum audio signals using a quantum machine learning approach called a quantum ensemble of quantum classifiers. This approach was implemented within the framework of the Deutsch–Jozsa algorithm, which uses the superposition property to create an ensemble of classifiers evaluated in parallel, significantly increasing the computational speed. The accuracy weight of the classifiers is adjusted based on the classifiers' performance in training data classification; finally, the measurement of the first n qubits of the Deutsch–Jozsa algorithm predicts whether the quantum audio signals belong to the stego or clean class. The idea stems from the classic ensemble methods that try to build more robust models by combining different classifiers. The results show that the proposed frequency domain steganalysis method with 95% accuracy performs better than the previous methods in the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Abbas, M. Schuld, F. Petruccione, On quantum ensembles of quantum classifiers. Quant. Mach. Intell. 2(1), 1–8 (2020)

    Google Scholar 

  2. M.J. Chaharlang, S. Mosleh, H. Rasouli, A novel quantum audio steganography–steganalysis approach using LSFQ-based embedding and QKNN-based classifier. Circuits Syst. Signal Process. 39(8), 3925–3957 (2020). https://doi.org/10.1007/s00034-020-01345-6

    Article  Google Scholar 

  3. J. Chaharlang, M. MoslehS, A. Rasouli-Heikalabad, A novel quantum steganography-Steganalysis system for audio signals. Multimedia Tools Appl. 79(25), 17551–17577 (2020). https://doi.org/10.1007/s11042-020-08694-z

    Article  Google Scholar 

  4. K. Chen, F. Yan, A.M. Iliyasu, J. Zhao, Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018). https://doi.org/10.1007/s10773-017-3580-7

    Article  MathSciNet  MATH  Google Scholar 

  5. S.A. Cuccaro, T.G. Draper, S.A. Kutin, D.P. Moulton, A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184. (2004). https://doi.org/10.48550/arXiv.quant-ph/0410184

  6. A. GalindoM, A. Martin-Delgado, Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74(2), 347 (2002). https://doi.org/10.1103/RevModPhys.74.347

    Article  MathSciNet  MATH  Google Scholar 

  7. H. GhasemzadehM, H. Kayvanrad, Comprehensive review of audio steganalysis methods. IET Signal Proc. 12(6), 673–687 (2018). https://doi.org/10.1049/iet-spr.2016.0651

    Article  Google Scholar 

  8. S. Gulde, M. Riebe, G.P. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I.L. Chuang, R. Blatt, Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421(6918), 48–50 (2003). https://doi.org/10.1038/nature01336

    Article  Google Scholar 

  9. P. Li, X. Liu, Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quant. Inform. 16(04), 1850031 (2018). https://doi.org/10.1142/S0219749918500314

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Li, B. Wang, H. Xiao, X. Liu, Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(10), 3242–3270 (2018). https://doi.org/10.1007/s10773-018-3841-0

    Article  MATH  Google Scholar 

  11. Q. Liu, A.H. Sung, M. Qiao. Spectrum steganalysis of WAV audio streams, in International Workshop on Machine Learning and Data Mining in Pattern Recognition. (2009). Springer

  12. Q. Liu, A.H. Sung, M. Qiao, Temporal derivative-based spectrum and mel-cepstrum audio steganalysis. IEEE Trans. Inf. Forensics Secur. 4(3), 359–368 (2009). https://doi.org/10.1109/TIFS.2009.2024718

    Article  Google Scholar 

  13. X. Lu, N. Jiang, H. HuZ, Ji, Quantum adder for superposition states. Int. J. Theor. Phys. 57(9), 2575–2584 (2018). https://doi.org/10.1007/S10773-018-3779-2

    Article  MATH  Google Scholar 

  14. M.A. NielsenI, L. Chuang, Quantum computation and quantum information. Am. J. Phys. 26(4), 37 (2010)

    Google Scholar 

  15. C.-Y. Pang, R.-G. Zhou, B.-Q. Hu, W. Hu, A. El-Rafei, Signal and image compression using quantum discrete cosine transform. Inf. Sci. 473, 121–141 (2019). https://doi.org/10.1016/j.ins.2018.08.067

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Rao, Audio Signal Processing. (2007). p. 169–189.https://doi.org/10.1007/978-3-540-75398-8_8

  17. E. Şahin, I. Yilmaz, QRMA: quantum representation of multichannel audio. Quant. Inf. Process. 18(7), 1–30 (2019). https://doi.org/10.1007/s11128-019-2317-3

    Article  MATH  Google Scholar 

  18. M. Schuld, F. Petruccione, Quantum ensembles of quantum classifiers. Sci. Rep. 8(1), 1–12 (2018). https://doi.org/10.1038/s41598-018-20403-3

    Article  MATH  Google Scholar 

  19. Y. Takahashi, N. Kunihiro, A linear-size quantum circuit for addition with no ancillary qubits. Quant. Inf. Comput. 5(6), 440–448 (2005)

    MathSciNet  MATH  Google Scholar 

  20. S. Tang, The Principle of Computer Composition (Higher Education Process, Beijing, 2008), pp.258–269

    Google Scholar 

  21. V. Vedral, A. Barenco, A. Ekert, Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996). https://doi.org/10.1103/PhysRevA.54.147

    Article  MathSciNet  Google Scholar 

  22. D. Wang, Z.-H. Liu, W.-N. Zhu, S.-Z. Li, Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  23. J. Wang, QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)

    Article  MATH  Google Scholar 

  24. Y. Wei, L. Guo, Y. Wang, C. Wang, A blind audio steganalysis based on feature fusion. J. Electron. 28(3), 265–276 (2011)

    Google Scholar 

  25. F. Yan, K. Chen, A.M. Iliyasu, K. Hirota, Circuit-based modular implementation of quantum ghost imaging. IEEE Access. 8, 23054–23068 (2020). https://doi.org/10.1109/ACCESS.2020.2970016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi Larki, S., Mosleh, M. & Kheyrandish, M. Quantum Audio Steganalysis Based on Quantum Fourier Transform and Deutsch–Jozsa Algorithm. Circuits Syst Signal Process 42, 2235–2258 (2023). https://doi.org/10.1007/s00034-022-02208-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02208-y

Keywords

Navigation