Abstract
Equations governing the transient- and steady-state regimes of the fractional series RLC circuits containing dissipative and/or generative capacitor and inductor are posed by considering the electric current as a response to electromotive force. Further, fractional RLC circuits are analyzed in the steady-state regime and their energy consumption/production properties are established depending on the angular frequency of electromotive force. Frequency characteristics of the modulus and argument of transfer function, i.e., of circuit’s equivalent admittance, are analyzed through the Bode diagrams for the whole frequency range, as well as for low and high frequencies employing the asymptotic expansions of transfer function modulus and argument.
Similar content being viewed by others
Data Availability Statement
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
A. Allagui, A.S. Elwakil, M.E. Fouda, A.G. Radwan, Capacitive behavior and stored energy in supercapacitors at power line frequencies. J. Power Sources 390, 142–147 (2018)
A. Allagui, T.J. Freeborn, A.S. Elwakil, M.E. Fouda, B.J. Maundy, A.G. Radwan, Z. Said, M.A. Abdelkareema, Review of fractional-order electrical characterization of supercapacitors. J. Power Sources 400, 457–467 (2018)
A. Allagui, D. Zhang, A.S. Elwakil, Short-term memory in electric double-layer capacitors. Appl. Phys. Lett. 113, 253901-1–5 (2018)
M.C. Bošković, T.B. Šekara, B. Lutovac, M. Daković, P.D. Mandić, M.P. Lazarević. Analysis of electrical circuits including fractional order elements, in 6th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro (2017)
A. Buscarino, R. Caponetto, S. Graziani, E. Murgano, Realization of fractional order circuits by a constant phase element. Eur. J. Control 54, 64–72 (2020)
R. Caponetto, S. Graziani, E. Murgano, Realization of a fractional-order RLC circuit via constant phase element. Int. J. Dyn. Control 9, 1589–1599 (2021)
X. Chen, Y. Chen, B. Zhang, D. Qiu, A modeling and analysis method for fractional-order DC-DC converters. IEEE Trans. Power Electron. 32, 7034–7044 (2017)
J.M. Cruz-Duarte, M. Guía-Calderón, J.J. Rosales-García, R. Correa, Determination of a physically correct fractional-order model for electrolytic computer-grade capacitors. Math. Methods Appl. Sci. 44, 4366–4380 (2021)
A. Dzieliński, G. Sarwas, D. Sierociuk, Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. 2011(11), 1–15 (2011)
O. Elwy, L.A. Said, A.H. Madian, A.G. Radwan, All possible topologies of the fractional-order Wien oscillator family using different approximation techniques. Circuits Syst. Signal Process. 38, 3931–3951 (2019)
M.E. Fouda, A. Allagui, A.S. Elwakil, S. Das, C. Psychalinos, A.G. Radwan, Nonlinear charge-voltage relationship in constant phase element. Int. J. Electron. Commun. AEÜ 117, 153104-1–4 (2020)
R. Garrappa, E. Kaslik, M. Popolizio, Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial. Mathematics 7, 407-1–21 (2019)
F. Gómez, J. Rosales, M. Guía, \({RLC}\) electrical circuit of non-integer order. Cent. Eur. J. Phys. 11, 1361–1365 (2013)
J.F. Gómez-Aguilar, R. Razo-Hernández, D. Granados-Lieberman, A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Revista Mexicana de Física 60, 32–38 (2014)
M. Guía, J. Rosales, F. Gómez, Analysis on the time and frequency domain for the \({RC}\) electric circuit of fractional order. Cent. Eur. J. Phys. 11, 1366–1371 (2013)
K. Haška, S.M. Cvetićanin, D. Zorica, Dissipative and generative fractional electric elements in modeling \(RC\) and \(RL\) circuits. Nonlinear Dyn. 105, 3451–3474 (2021)
K. Haška, D. Zorica, S.M. Cvetićanin, Fractional \(RLC\) circuit in transient and steady state regimes. Commun. Nonlinear Sci. Numer. Simul. 96, 105670-1–17 (2021)
J.I. Hidalgo-Reyes, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, V.M. Alvarado-Martínez, M.G. López-López, Classical and fractional-order modeling of equivalent electrical circuits for supercapacitors and batteries, energy management strategies for hybrid systems and methods for the state of charge estimation: a state of the art review. Microelectron. J. 85, 109–128 (2019)
J.I. Hidalgo-Reyes, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, V.M. Alvarado-Martínez, M.G. López-López, Determination of supercapacitor parameters based on fractional differential equations. Int. J. Circuit Theory Appl. 47, 1225–1253 (2019)
A. Jakubowska, J. Walczak, Analysis of the transient state in a circuit with supercapacitor. Poznan Univ. Technol. Acad. J. Electr. Eng. 81, 71–77 (2015)
A. Jakubowska, J. Walczak, Analysis of the transient state in a series circuit of the class \({R}{L}_{\beta }{C}_{\alpha }\). Circuits Syst. Signal Process. 35, 1831–1853 (2016)
A. Jakubowska-Ciszek, J. Walczak, Analysis of the transient state in a parallel circuit of the class \({R}{L}_{\beta }{C}_{\alpha }\). Appl. Math. Comput. 319, 287–300 (2018)
I.S. Jesus, J.A.T. Machado, Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56, 45–55 (2009)
Y. Jiang, B. Zhang, X. Shu, Z. Wei, Fractional-order autonomous circuits with order larger than one. J. Adv. Res. 25, 217–225 (2020)
D.A. John, K. Biswas, Electrical equivalent circuit modelling of solid state fractional capacitor. Int. J. Electron. Commun. AEÜ 78, 258–264 (2017)
A. Kartci, A. Agambayev, N. Herencsar, K.N. Salama, Series-, parallel-, and inter-connection of solid-state arbitrary fractional-order capacitors: theoretical study and experimental verification. IEEE Access 6, 10933–10943 (2018)
M.M. Khader, J.F. Gómez-Aguilar, M. Adel, Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method. Int. J. Circuit Theory Appl. 49, 3266–3285 (2021)
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
M.S. Krishna, S. Das, K. Biswas, B. Goswami, Fabrication of a fractional order capacitor with desired specifications: a study on process identification and characterization. IEEE Trans. Electron Devices 58, 4067–4073 (2011)
J.A.T. Machado, A.M.S.F. Galhano, Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 68, 107–115 (2012)
V. Martynyuk, M. Ortigueira, Fractional model of an electrochemical capacitor. Signal Process. 107, 355–360 (2015)
V. Martynyuk, M. Ortigueira, M. Fedula, O. Savenko, Methodology of electrochemical capacitor quality control with fractional order model. Int. J. Electron. Commun. AEÜ 91, 118–124 (2018)
D. Mondal, K. Biswas, Packaging of single-component fractional order element. IEEE Trans. Device Mater. Reliab. 13, 73–80 (2013)
V.F. Morales-Delgado, J.F. Gómez-Aguilar, M.A. Taneco-Hernández, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense. Int. J. Electron. Commun. AEÜ 85, 108–117 (2018)
V.F. Morales-Delgado, J.F. Gómez-Aguilar, M.A. Taneco-Hernández, R.F. Escobar-Jiménez, Fractional operator without singular kernel: applications to linear electrical circuits. Int. J. Circuit Theory Appl. 46, 2394–2419 (2018)
M.A. Moreles, R. Lainez, Mathematical modelling of fractional order circuit elements and bioimpedance applications. Commun. Nonlinear Sci. Numer. Simul. 46, 81–88 (2017)
K. Nosrati, M. Shafiee, On the convergence and stability of fractional singular Kalman filter and Riccati equation. J. Frankl. Inst. Eng. Appl. Math. 357, 7188–7210 (2020)
A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals and Systems. Prentice-Hall Signal Processing Series (Prentice-Hall, Hoboken, 1997)
M.D. Ortigueira, D. Valério, Fractional Signals and Systems, volume 7 of Fractional Calculus in Applied Sciences and Engineering (de Gruyter, Berlin, 2020)
R. Prasad, K. Kothari, U. Mehta, Flexible fractional supercapacitor model analyzed in time domain. IEEE Access 7, 122626–122633 (2019)
R. Prasad, U. Mehta, K. Kothari, Various analytical models for supercapacitors: a mathematical study. Resour. Effic. Technol. 1, 1–15 (2020)
J.J. Quintana, A. Ramos, I. Nuez, Modeling of an EDLC with fractional transfer functions using Mittag-Leffler equations. Math. Probl. Eng. 2013, 807037-1–7 (2013)
A.G. Radwan, Resonance and quality factor of the \({R}{L}_{\alpha }{C}_{\alpha }\) fractional circuit. IEEE J. Emerg. Sel. Top. Circuits Syst. 3, 377–385 (2013)
A.G. Radwan, M.E. Fouda, Optimization of fractional-order \({RLC}\) filters. Circuits Syst. Signal Process. 32, 2097–2118 (2013)
A.G. Radwan, K.N. Salama, Passive and active elements using fractional \({L}_{\beta }{C}_{\alpha }\) circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 2388–2397 (2011)
A.G. Radwan, K.N. Salama, Fractional-order \({RC}\) and \({RL}\) circuits. Circuits Syst. Signal Process. 31, 1901–1915 (2012)
A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuit examples. Int. J. Circuit Theory Appl. 36, 473–492 (2008)
M.S. Sarafraz, M.S. Tavazoei, Realizability of fractional-order impedances by passive electrical networks composed of a fractional capacitor and \({RLC}\) components. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 2829–2835 (2015)
I. Schäfer, K. Krüger, Modelling of coils using fractional derivatives. J. Magn. Magn. Mater. 307, 91–98 (2006)
N. Sene, J.F. Gómez-Aguilar, Analytical solutions of electrical circuits considering certain generalized fractional derivatives. Eur. Phys. J. Plus 134, 260-1–14 (2019)
Z.M. Shah, M.Y. Kathjoo, F.A. Khanday, K. Biswas, C. Psychalinos, A survey of single and multi-component fractional-order elements (FOEs) and their applications. Microelectron. J. 84, 9–25 (2019)
M. Sowa, A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Sci. Tech. Sci. 62, 449–454 (2014)
M. Sowa, “gcdAlpha’’—a semi-analytical method for solving fractional state equations. Poznan Univ. Technol. Acad. J. Electr. Eng. 96, 231–242 (2018)
T.P. Stefański, J. Gulgowski, Electromagnetic-based derivation of fractional-order circuit theory. Commun. Nonlinear Sci. Numer. Simul. 79, 104897-1–13 (2019)
T.P. Stefański, J. Gulgowski, Signal propagation in electromagnetic media described by fractional-order models. Commun. Nonlinear Sci. Numer. Simul. 82, 105029-1–16 (2020)
R. Süße, A. Domhardt, M. Reinhard, Calculation of electrical circuits with fractional characteristics of construction elements. Forsch. Ingenieurwes. 69, 230–235 (2005)
M.S. Tavazoei, Passively realizable approximations of non-realizable fractional order impedance functions. J. Frankl. Inst. Eng. Appl. Math. 357, 7037–7053 (2020)
J. Walczak, A. Jakubowska, Resonance in series fractional order \({R}{L}_{\beta }{C}_{\alpha }\) circuit. Przegląd Elektrotechniczny 90, 210–213 (2014)
S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1, 826–839 (1994)
B. Zhang, X. Shu, Fractional-Order Electrical Circuit Theory. CPSS Power Electronics Series (Springer, Singapore, 2022)
L. Zhou, Z. Tan, Q. Zhang, A fractional-order multifunctional \(n\)-step honeycomb \(RLC\) circuit network. Front. Inf. Technol. Electron. Eng. 18, 1186–1196 (2017)
Acknowledgements
This work is supported by the Serbian Ministry of Science, Education and Technological Development under grants 451-03-68/2022-14/200156 (SMC), and 451-03-68/2022-14/200125 (DZ).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Haška, K., Zorica, D. & Cvetićanin, S.M. Frequency Characteristics of Dissipative and Generative Fractional RLC Circuits. Circuits Syst Signal Process 41, 4717–4754 (2022). https://doi.org/10.1007/s00034-022-02025-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-022-02025-3