Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Signal Decomposition Algorithm Based on Multiple Complex AMFM Model

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The model-based signal decomposition algorithm is an important research direction in the field of digital signal processing, especially based on the amplitude modulation and frequency modulation (AMFM) model. In this paper, a signal decomposition algorithm based on multiple complex AMFM model is proposed to analyze multi-model data sets. Firstly, the analyzed signal is converted into the form of the analytic signal because of the simple representation of the AMFM model in the analytic domain. Then, the multi-model optimization equation of the analytic signal is realized by the estimated instantaneous frequency (IF) of each model, which can be estimated by time–frequency analysis (TFA). Finally, each model parameter of the optimization equation is solved by the partial differential equation and the alternating direction method of multipliers method (ADMM) to find the global optimal solution of the signal. In the optimization equation, we introduce the leakage factor to improve the extraction accuracy of the model; at the same time, we employ the cyclic iteration method to optimize the equation parameters to improve the convergence rate of the algorithm. Several examples of the simulated and real-life signals are provided to show that the proposed algorithm can accurately estimate the parameters of each model in the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Bat. https://cpb-us-e1.wpmucdn.com/blogs.rice.edu/dist/0/7717/files/software/batsignal.zip.

  2. E. Bedrosian, A product theorem for Hilbert transform. Proc. IEEE 51(5), 868–869 (1963). https://doi.org/10.1109/PROC.1963.2308

    Article  Google Scholar 

  3. C.Y. Chen, S.M. Guo, W.S. Chang et al., An improved bidimensional empirical mode decomposition: a mean approach for fast decomposition. Signal Process. 98, 344–358 (2014). https://doi.org/10.1016/j.sigpro.2013.11.034

    Article  Google Scholar 

  4. S.Q. Chen, X.J. Dong, Z.K. Peng et al., Nonlinear chirp mode decomposition: a variational method. IEEE Trans. Signal Process. 65(22), 6024–6037 (2017). https://doi.org/10.1109/TSP.2017.2731300

    Article  MathSciNet  MATH  Google Scholar 

  5. S.Q. Chen, X.J. Dong, G.P. Xing et al., Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sens. J. 17, 5994–6005 (2017). https://doi.org/10.1109/JSEN.2017.2737467

    Article  Google Scholar 

  6. S.Q. Chen, Y. Yang, Z.K. Peng et al., Adaptive chirp mode pursuit: algorithm and applications. Mech. Syst. Signal Process. 116(1), 566–584 (2019). https://doi.org/10.1016/j.ymssp.2018.06.052

    Article  Google Scholar 

  7. I. Daubechies, J.F. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011). https://doi.org/10.1016/j.acha.2010.08.002

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Debnath, Wavelet Transforms and Their Applications (Springer, Birkhäuser, 2002)

    Book  Google Scholar 

  9. Discovery of Sound in the Sea. 2002. [Online]. Available: https://dosits.org/resources/ resource-categories/feature-sounds/haunting-refrains-humpback/.

  10. K. Dragomiretskiy, D. Zosso, Two-Dimensional Variational Mode Decomposition (Springer, Cham, 2015), pp. 197–208

    MATH  Google Scholar 

  11. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014). https://doi.org/10.1109/TSP.2013.2288675

    Article  MathSciNet  MATH  Google Scholar 

  12. F.L. Gall. Powers of tensors and fast matrix multiplication. Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation. 296–303 (2014). https://doi.org/10.1145/2608628.2608664.

  13. Q.W. Gao, D. Zhu, D. Sun et al., A denoising method based on null space pursuit for infrared spectrum. Neurocomputing 137, 180–184 (2014). https://doi.org/10.1016/j.neucom.2013.04.057

    Article  Google Scholar 

  14. B.K. Guo, S.L. Peng, X.Y. Xu, Complex-valued differential operator-based method for multi-component signal separation. Signal Process. 132, 66–76 (2017). https://doi.org/10.1016/j.sigpro.2016.09.015

    Article  Google Scholar 

  15. X.Y. Hu, S.L. Peng, W.L. Hwang, Adaptive integral operators for signal separation. IEEE Signal Process. Lett. 22(9), 1383–1387 (2015). https://doi.org/10.1109/LSP.2014.2352340

    Article  Google Scholar 

  16. X.Y. Hu, S.L. Peng, W.L. Hwang, Multicomponent AM-FM signal separation and demodulation with null space pursuit. Signal, Image Video Process. 7, 1093–1102 (2013). https://doi.org/10.1007/s11760-012-0354-9

    Article  Google Scholar 

  17. X.Y. Hu, S.L. Peng, W.L. Hwang, Operator based multicomponent AM-FM signal separation approach. IEEE Int. Workshop Mach. Learn. Signal Process. 18, 1–6 (2011). https://doi.org/10.1109/MLSP.2011.6064592

    Article  Google Scholar 

  18. N.E. Huang, Z. Shen, S.R. Long et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 454, 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Liu, Z.J. Luo, J.H. Huang et al., A comparative study of four kinds of adaptive decomposition algorithms and their applications. Sensors 18(7), 1–51 (2018). https://doi.org/10.3390/s18072120

    Article  Google Scholar 

  20. F.J. Owens, M.S. Murphy, A short-time Fourier transform. Signal Process. 14(1), 3–10 (1988). https://doi.org/10.1016/0165-1684(88)90040-0

    Article  Google Scholar 

  21. S.L. Peng, W.L. Hwang, Null space pursuit: an operator-based approach to adaptive signal separation. IEEE Trans. Signal Process. 58(5), 2475–2483 (2010). https://doi.org/10.1109/TSP.2010.2041606

    Article  MathSciNet  MATH  Google Scholar 

  22. D.H. Pham, S. Meignen, High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal. IEEE Trans. Signal Process. 65(12), 3168–3178 (2019). https://doi.org/10.1109/TSP.2017.2686355

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Rader, The fast Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 23(2), 245–246 (1975). https://doi.org/10.1109/TASSP.1975.1162674

    Article  Google Scholar 

  24. N. Rehman, H. Aftab, Multivariate variational mode decomposition. IEEE Trans. Signal Process. 67(23), 6039–6052 (2019). https://doi.org/10.1109/TSP.2019.2951223

    Article  MathSciNet  MATH  Google Scholar 

  25. X.T. Tu, Y. Hu, F.C. Li et al., Demodulated high-order synchrosqueezing transform with application to machine fault diagnosis. IEEE Trans. Industr. Electron. 66(4), 3071–3081 (2019). https://doi.org/10.1109/TIE.2018.2847640

    Article  Google Scholar 

  26. Voice signal /gao/ [EB/OL]. https://hanyu-word-pinyin-short.cdn.bcebos.com/gao1.mp3.

  27. Y.X. Wang, F.Y. Liu, Z.S. Jiang et al., Complex variational mode decomposition for signal processing applications. Mech. Syst. Signal Process. 86, 75–85 (2017). https://doi.org/10.1016/j.ymssp.2016.09.032

    Article  Google Scholar 

  28. Z.H. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01(01), 1–41 (2009). https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  29. J.R. Yeh, J.S. Shieh, N.E. Huang, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 02(02), 135–156 (2010). https://doi.org/10.1142/S1793536910000422

    Article  MathSciNet  Google Scholar 

  30. G. Yu, Z.H. Wang, P. Zhao, Multisynchrosqueezing transform. IEEE Trans. Industr. Electron. 66(7), 5441–5455 (2019). https://doi.org/10.1109/TIE.2018.2868296

    Article  Google Scholar 

  31. G. Yu, M.J. Yu, C.Y. Xu, Synchroextracting transform. IEEE Trans. Industr. Electron. 64(10), 8042–8054 (2017). https://doi.org/10.1109/TIE.2017.2696503

    Article  Google Scholar 

  32. D. Zhu, Q.W. Gao, Y.X. Lu et al., A signal decomposition algorithm based on complex AM-FM model. Digit. Signal Processing. 107, 1–9 (2020). https://doi.org/10.1016/j.dsp.2020.102860

    Article  Google Scholar 

  33. D. Zhu, Q.W. Gao, D. Sun et al., A detection method for bearing faults using null space pursuit and S transform. Signal Process. 96, 80–89 (2014). https://doi.org/10.1016/j.sigpro.2013.04.019

    Article  Google Scholar 

  34. D. Zhu, Q.W. Gao, D. Sun et al., A detection method for bearing faults using complex-valued null space pursuit and 1.5-dimensional teager energy spectrum. IEEE Sens. J. 20(15), 8445–8454 (2020). https://doi.org/10.1109/JSEN.2020.2983261

    Article  Google Scholar 

Download references

Funding

This work is supported by the Key Science Program of Anhui Education Department (KJ2018A0012, KJ2019A0023) and the Research Fund for Doctor of Anhui University (J01003266), and is also supported by the National Natural Science Foundation of China (NSFC) (61402004, 61601003, 61370110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Gao, Q., Lu, Y. et al. A Signal Decomposition Algorithm Based on Multiple Complex AMFM Model. Circuits Syst Signal Process 41, 1052–1073 (2022). https://doi.org/10.1007/s00034-021-01825-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01825-3

Keywords

Navigation