Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Controllability and Reachability of Periodically Time-Variant Mixed-Valued Logical Control Networks

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the controllability and reachability of periodically time-variant mixed-valued logical control networks (PTMLCNs). The PTMLCN considered in this paper consists of several mixed-valued logical control networks with periodically switching signals, which circulates among different mixed-valued logical control networks. First, a PTMLCN is transformed into a discrete dynamic system by the semi-tensor product. Based on this algebraic expression, the time-dependent input-state incident matrix and the time-dependent state transition matrix are defined and the relationship between these two matrices is given. Secondly, the controllability and reachability of PTMLCNs are defined. Subsequently, by virtue of the proposed matrices, a series of necessary and sufficient conditions are given for checking controllability and reachability, and the algorithm for finding the optimal control sequence to reach the target state in the shortest time is designed. Finally, the effectiveness of the proposed method is verified by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. B. Chen, J. Cao, G. Lu, L. Rutkowski, Lyapunov function for the set stability and the synchronization of Boolean control networks. IEEE T. Circults-II (2019). https://doi.org/10.1109/TCSII.2019.2952415

    Article  Google Scholar 

  2. D. Cheng, H. Qi, Controllability and observability of Boolean control networks. Automatica 45(7), 1659–1667 (2009)

    Article  MathSciNet  Google Scholar 

  3. D. Cheng, H. Qi, Z. Li, J. Liu, Stability and stabilization of Boolean networks. Int. J. Robust Nonlinear Control 21(2), 134–156 (2011)

    Article  MathSciNet  Google Scholar 

  4. D. Cheng, Y. Zhao, Identification of Boolean control networks. Automatica 47(4), 702–710 (2011)

    Article  MathSciNet  Google Scholar 

  5. D. Cheng, Y. Zhao, X. Xu, Mixed-valued logic and its applications. J. Shandong Univ. 46(10), 32–44 (2011)

    MathSciNet  MATH  Google Scholar 

  6. E. Fornasini, M. Valcher, Optimal control of Boolean control networks. IEEE Trans. Autom. Control 59(5), 1258–1270 (2014)

    Article  MathSciNet  Google Scholar 

  7. J. Hu, G. Sui, X. Lv, X. Li, Fixed-time control of delayed neural networks with impulsive perturbations. Nonlinear Anal. Model Control 23(6), 904–920 (2018)

    Article  MathSciNet  Google Scholar 

  8. S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  9. F. Li, J. Sun, Controllability of higher order Boolean control networks. Appl. Math. Comput. 219(1), 158–169 (2012)

    MathSciNet  MATH  Google Scholar 

  10. F. Li, L. Xie, Set stabilization of probabilistic Boolean networks Using Pinning Control. IEEE Trans. Neur. Net. Learn. 30(8), 2555–2561 (2019)

    Article  MathSciNet  Google Scholar 

  11. H. Li, X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM J. Control Optim. 57(2), 810–831 (2019)

    Article  MathSciNet  Google Scholar 

  12. H. Li, Y. Wang, On reachability and controllability of switched Boolean control networks. Automatica 48(11), 2917–2922 (2012)

    Article  MathSciNet  Google Scholar 

  13. H. Li, Y. Zheng, F. Alsaadi, Algebraic formulation and topological structure of Boolean networks with state-dependent delay. J. Comput. Appl. Math. 350, 87–97 (2019)

    Article  MathSciNet  Google Scholar 

  14. R. Li, T. Chu, Complete synchronization of Boolean networks. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 840–846 (2012)

    Article  Google Scholar 

  15. R. Li, M. Yang, T. Chu, State feedback stabilization for Boolean control networks. IEEE Trans. Autom. Control 58(7), 1853–1857 (2013)

    Article  MathSciNet  Google Scholar 

  16. Y. Li, H. Li, X. Ding, Set stability of switched delayed logical networks with application to finite-field consensus. Automatica 113, 108768 (2020)

    Article  MathSciNet  Google Scholar 

  17. Z. Li, D. Cheng, Algebraic approach to dynamics of multivalued networks. Int. J. Bifurcation Chaos 20(3), 561–582 (2010)

    Article  MathSciNet  Google Scholar 

  18. Y. Liu, L. Sun, J. Lu, J. Liang, Feedback controller design for the synchronization of Boolean control networks. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1991–1996 (2016)

    Article  MathSciNet  Google Scholar 

  19. J. Lu, L. Sun, Y. Liu, D. Ho, J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J. Control Optim. 56(6), 4385–4404 (2018)

    Article  MathSciNet  Google Scholar 

  20. J. Pan, J. Feng, M. Meng, Steady-state analysis of probabilistic Boolean networks. J. Frankl. Inst. 356(5), 2994–3009 (2019)

    Article  MathSciNet  Google Scholar 

  21. H. Qi, D. Cheng, Analysis and control of Boolean networks: a semi-tensor product approach. Zidonghua Xuebao/acta Automatica Sinica 37(5), 529–540 (2011)

    MathSciNet  MATH  Google Scholar 

  22. B. Ristevski, A survey of models for inference of gene regulatory networks. Nonlinear Anal. Model Control 18(4), 444–465 (2013)

    Article  MathSciNet  Google Scholar 

  23. I. Shmulevich, E. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  24. B. Wang, J. Feng, Controllability of periodically time-variant Boolean control networks and its application in a class of apoptosis network. J. Syst. Sci. Math. Sci. 36(7), 973–985 (2016)

    MathSciNet  MATH  Google Scholar 

  25. B. Wang, J. Feng, On detectability of probabilistic Boolean networks. Inf. Sci. 483, 383–395 (2019)

    Article  MathSciNet  Google Scholar 

  26. B. Wang, J. Feng, H. Li, On detectability of Boolean control networks. Nonlinear Anal. Hybrid Syst. 36, 100859 (2020)

    Article  MathSciNet  Google Scholar 

  27. X. Xu, Y. Liu, H. Li, F. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects. Nonlinear Anal. Model Control 23(4), 553–567 (2018)

    Article  MathSciNet  Google Scholar 

  28. D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback. Nonlinear Anal. Hybrid Syst. 32, 294–305 (2019)

    Article  MathSciNet  Google Scholar 

  29. D. Yang, X. Li, J. Shen, Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes. Math. Meth. Appl. Sci. 41(6), 6968–6983 (2018)

    Article  MathSciNet  Google Scholar 

  30. Y. Yu, M. Meng, J. Feng, Observability of Boolean networks via matrix equations. Automatica 111, 108621 (2019)

    Article  MathSciNet  Google Scholar 

  31. Y. Yu, M. Meng, J. Feng, P. Wang, Stabilizability analysis and switching signals design of switched Boolean networks. Nonlinear Anal. Hybrid Syst. 30, 31–44 (2018)

    Article  MathSciNet  Google Scholar 

  32. L. Zhang, J. Feng, Model-input-state matrix of switched Boolean control networks and its applications. in Proceedings of the 10th World Congress on Intelligent Control and Automation, July 6–8 (Beijing, China, 2012). p. 1477–1482

  33. L. Zhang, J. Feng, J. Yao, Controllability and observability of switched Boolean control networks. IET Contr. Theory Appl. 6(16), 2477–2484 (2012)

    Article  MathSciNet  Google Scholar 

  34. Q. Zhang, J. Feng, J. Pan, J. Xia, Set controllability for switched Boolean control networks. Neurocomputing 359(24), 476–482 (2019)

    Article  Google Scholar 

  35. Y. Zhao, D. Cheng, Optimal control of mix-valued logical control networks, in Proceedings of the 29th Chinese Control Conference, July 29–31 (China, Beijing, 2010), pp. 1618–1623

  36. Y. Zhao, D. Cheng, Controllability and Stabilizability of Probabilistic Logical Control Networks, in Decision and Control, December 10–13 (HI, Maui, 2012), pp. 6729–6734

    Google Scholar 

  37. Y. Zhao, Z. Li, D. Cheng, Optimal control of logical control networks. IEEE Trans. Autom. Control 56(8), 1766–1776 (2011)

    Article  MathSciNet  Google Scholar 

  38. Y. Zhao, H. Qi, D. Cheng, Input-state incidence matrix of Boolean control networks and its applications. Syst. Control Lett. 59(12), 767–774 (2010)

    Article  MathSciNet  Google Scholar 

  39. R. Zhou, Y. Guo, W. Gui, Set reachability and observability of probabilistic Boolean networks. Automatica 106, 230–241 (2019)

    Article  MathSciNet  Google Scholar 

  40. S. Zhu, J. Lu, Y. Liu, Asymptotical stability of probabilistic Boolean networks with state delays. IEEE T. Automat. Contr. 65(4), 1779–1784 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-e Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (61773371, 61877036, 61773238), and the Natural Science Foundation of Shandong Province (ZR2019MF002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Feng, Je. & Zhu, S. Controllability and Reachability of Periodically Time-Variant Mixed-Valued Logical Control Networks. Circuits Syst Signal Process 40, 3639–3654 (2021). https://doi.org/10.1007/s00034-021-01648-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01648-2

Keywords

Navigation