Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stochastic Resonance Effect in Optimal Decision Solution Under Neyman–Pearson Criterion

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, stochastic resonance effect on the optimal detection under Neyman–Pearson (NP) criterion is investigated for a general nonlinear system. To this end, a noise enhanced detection optimization problem for maximizing the probability of detection under a constant constraint on the probability of false-alarm is formulated, where an additive noise is added to the nonlinear system input and the final decision is made based on the system output according to the NP criterion. Firstly, the noise modified NP decision rule is derived. Since one additive noise corresponds to one noise modified NP decision rule, the noise-modified NP decision rule can be viewed as a function of the additive noise. Then, the improvability of the optimal detection performance under NP criterion via the proposed noise-modified decision solution is simply discussed. The optimal additive noise is deduced as a random signal of no more than two constant vectors and the corresponding noise-modified NP decision rule is also determined. Finally, the performance comparisons between the original and the noise-modified optimal NP decision solutions for the sine transform system and the Amplitude limit system are made to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.B. Akbay, S. Gezici, Noise benefits in joint detection and estimation problems. Signal Process. 118, 235–247 (2016)

    Article  Google Scholar 

  2. K. Audhkhasi, O. Osoba, B. Kosko, Noise-enhanced convolutional neural networks. Neural Netw. 78, 15–23 (2016)

    Article  Google Scholar 

  3. G.O. Balkan, S. Gezici, CRLB based optimal noise enhanced parameter estimation using quantized observations. IEEE Signal Process. Lett. 17(5), 477–480 (2010)

    Article  Google Scholar 

  4. S. Bayram, S. Gezici, Noise enhanced M-ary composite hypothesis-testing in the presence of partial prior information. IEEE Trans. Signal Process. 59(3), 1292–1297 (2011)

    Article  MathSciNet  Google Scholar 

  5. S. Bayram, S. Gezici, H.V. Poor, Noise enhanced hypothesis-testing in the restricted Bayesian framework. IEEE Trans. Signal Process. 58(8), 3972–3989 (2010)

    Article  MathSciNet  Google Scholar 

  6. S. Bayrama, S. Gultekinb, S. Gezici, Noise enhanced hypothesis-testing according to restricted Neyman–Pearson criterion. Digit. Signal Process. 25, 17–27 (2014)

    Article  MathSciNet  Google Scholar 

  7. R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14(11), L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  8. F. Chapeau-Blondeau, Quantum state discrimination and enhancement by noise. Phys. Let. A 378(30–31), 2128–2136 (2014)

    Article  MathSciNet  Google Scholar 

  9. F. Chapeau-Blondeau, D. Rousseau, Noise-enhanced performance for an optimal Bayesian estimator. IEEE Trans. Signal Process. 52(5), 1327–1334 (2004)

    Article  MathSciNet  Google Scholar 

  10. H. Chen, P.K. Varshney, J.H. Michels, Noise enhanced parameter estimation. IEEE Trans. Signal Process. 56(10), 5074–5081 (2008)

    Article  MathSciNet  Google Scholar 

  11. H. Chen, P.K. Varshney, S. Kay, J.H. Michels, Theory of the stochastic resonance effect in signal detection: part I—fixed detectors. IEEE Trans. Signal Process. 55(7), 3172–3184 (2007)

    Article  MathSciNet  Google Scholar 

  12. H. Chen, P.K. Varshney, S. Kay, J.H. Michels, Theory of the stochastic resonance effect in signal detection: part II—variable detectors. IEEE Trans. Signal Process. 56(10), 5031–5041 (2008)

    Article  MathSciNet  Google Scholar 

  13. F. Duan, F. Chapeau-Blondeau, D. Abbott, Noise-enhanced SNR gain in parallel array of bistable oscillators. Electron. Lett. 42(17), 1008–1009 (2006)

    Article  Google Scholar 

  14. Z. Gingl, P. Makra, R. Vajtai, High signal-to-noise ratio gain by stochastic resonance in a double well. Fluctuat. Noise Lett. 1(3), L181–L188 (2001)

    Article  Google Scholar 

  15. S. Kay, Can detectability be improved by adding noise? IEEE Signal Process. Lett. 7(1), 8–10 (2000)

    Article  Google Scholar 

  16. S. Kay, J.H. Michels, H. Chen, K. Varshney, Reducing probability of descision error using stochastic Resonance. IEEE Signal Process. Lett. 13(11), 695–698 (2006)

    Article  Google Scholar 

  17. L. Li, P. Shi, Y. Zhao et al., Containment control of multi-agent systems with uniform quantization. Circuits Syst. Signal Process. 38(9), 3952C3970 (2019)

    Article  Google Scholar 

  18. S. Liu, T. Yang et al., Noise enhanced binary hypothesis-testing in a new framework. Digital Signal Process. 41, 22–31 (2015)

    Article  MathSciNet  Google Scholar 

  19. L. Lcken, O.V. Popovych, P.A. Tass, S. Yanchuk, Noise-enhanced coupling between two oscillators with long-term plasticity. Phys. Rev. E 93, 032210 (2016)

    Article  MathSciNet  Google Scholar 

  20. Patel, A., Kosko, B.: Mutual-information noise benefits in Brownian models of continuous and spiking neurons. In: International Joint Conference on Neural Network, pp. 1368–1375 (2006)

  21. A. Patel, B. Kosko, Optimal noise benefits in Neyman-Pearson and inequality constrained signal detection. IEEE Trans. Signal Process. 57(5), 1655–1669 (2009)

    Article  MathSciNet  Google Scholar 

  22. A. Patel, B. Kosko, Optimal mean-square noise benefits in quantizer-array linear estimation. IEEE Signal Process. Lett. 17(12), 1005–1009 (2010)

    Article  Google Scholar 

  23. M. Perc, Coherence resonance in a spatial prisoner’s dilemma game. New J. Phys. 8, 22 (2006)

    Article  Google Scholar 

  24. M. Perc, Double resonance in cooperation induced by noise and network variation for an evolutionary prisoner’s dilemma. New J. Phys. 8(9), 183 (2006)

    Article  Google Scholar 

  25. J. Pongfai, X. Su, H. Zhang et al., A novel optimal PID controller autotuning design based on the SLP algorithm. Expert Syst. 37(2), e12489 (2020)

    Article  Google Scholar 

  26. D. Rousseau, G.V. Anand, F. Chapeau-Blondeau, Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise. Signal Process. 86(11), 3456–3465 (2006)

    Article  Google Scholar 

  27. D. Rousseau, F. Chapeau-Blondeau, Noise-improved Bayesian estimation with arrays of one-bit quantizers. IEEE Trans. Instrum. Meas. 56(6), 2658–2662 (2007)

    Article  Google Scholar 

  28. T.A. Schonhoff, A.A. Giordano, Detection and estimation theory and its application (Prentice Hall, Upper Saddle River, 2006)

    Google Scholar 

  29. M. Wuehr, E. Nusser, S. Krafczyk et al., Noise-enhanced vestibular input improves dynamic walking stability in healthy subjects. Brain Stimul. 9(1), 109–116 (2016)

    Article  Google Scholar 

  30. T. Yang, S. Liu et al., Noise benefits parameter estimation in LMMSE sense. Digital Signal Process. 73, 153–163 (2018)

    Article  MathSciNet  Google Scholar 

  31. T. Yang, S. Liu et al., Optimal noise enhanced signal detection in a unified framework. Entropy 18(6), 213 (2016)

    Article  MathSciNet  Google Scholar 

  32. Z. Yin, H. Song et al., Noise-enhanced chaos in a weakly coupled GaAs/(Al, Ga)As superlattice. Phys. Rev. E 95, 012218 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61901067, 61903052), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202000811, KJQN201900824, KJQN201900828), and the Scientific Research Project of Chongqing Technology and Business University in China (Grant Nos. 1956009, 1956011, 1952002). All data generated or analyzed during this study are included in this published article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Li, Y., Yang, S. et al. Stochastic Resonance Effect in Optimal Decision Solution Under Neyman–Pearson Criterion. Circuits Syst Signal Process 40, 3286–3304 (2021). https://doi.org/10.1007/s00034-020-01644-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01644-y

Keywords

Navigation