Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Static and Dynamic Triggered Mechanisms for Event-Triggered Control of Uncertain Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This study presents both static and dynamic event-triggered mechanisms for the design of event-triggered stabilizing state feedback controllers for a class of uncertain nonlinear systems. Sufficient conditions based on linear matrix inequalities are first provided to guarantee the asymptotic stability of the closed-loop system. The controllers are then systematically designed. We also prove that the inter-event intervals of the considered event-triggered mechanisms are positive, therefore ensuring that the Zeno behavior does not happen. Two examples with simulations are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.J. Astrom, B. Wittenmark, Computer Controlled Systems (Prentice Hall, Upper Saddle River, 1977)

    Google Scholar 

  2. Z. Fei, C. Guan, H. Gao, Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme. IEEE Trans. Neural Netw. Learn. Syst. 29, 2558–2567 (2018)

    Article  MathSciNet  Google Scholar 

  3. G.F. Franklin, J.D. Powel, A. Emami-Naeini, Feedback Control of Dynamical Systems (Prentice Hall, Upper Saddle River, 2010)

    Google Scholar 

  4. A. Girard, Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 60, 1992–1997 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.L. Gouz\(\acute{\text{e}}\), A. Rapaport, M.Z. Hadj-Sadok, Interval observers for uncertain biological systems. Ecol. Model. 133(1–2), 45–56 (2000)

  6. T. Henningsson, E. Johannesson, A. Cervin, Sporadic event-based control of first-order linear stochastic systems. Automatica 44, 2890–2895 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Kostic, I. Franovic, M. Perc, N. Vasovic, K. Todorovic, Triggered dynamics in a model of different fault creep regime. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

  8. X. Li, J. Cao, M. Perc, Switching laws design for stability of finite and infinite delayed switched systems with stable and unstable modes. IEEE Access 6, 6677–6691 (2018)

    Article  Google Scholar 

  9. L. Li, A. Hu, H. Gao, Node-to-node consensus of multi-agent networks with event-triggered control and packet losses. Asian J. Control (2019). https://doi.org/10.1002/asjc.2247

    Article  Google Scholar 

  10. W. Liu, J. Huang, Robust practical output regulation for a class of uncertain linear minimum-phase systems by outputbased event-triggered control. Int. J. Robust Nonlinear Control 27, 574–4590 (2017)

    Google Scholar 

  11. W. Liu, J. Huang, Event-triggered global robust output regulation for a class of nonlinear systems. IEEE Trans. Autom. Control 62, 5923–5930 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.D. Murray, Mathematical Biology (Springer, Berlin, 1990)

    MATH  Google Scholar 

  13. C. Peng, F. Li, A survey on recent advances in event-triggered communication and control. Inf. Sci. 457, 113–125 (2018)

    Article  MathSciNet  Google Scholar 

  14. H. Shen, F. Li, H. Yan, H.R. Karimi, H.-K. Lam, Finite-time event-triggered \(H_{\infty }\) control for T–S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26, 3122–3135 (2018)

    Google Scholar 

  15. H. Shen, Y. Wang, J. Xia, J.H. Park, Z. Wang, Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: an event-triggered control scheme. Nonlinear Anal. Hybrid Syst. 34, 92–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52, 1680–1685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Tallapragada, N. Chopra, On event triggered tracking for nonlinear systems. IEEE Trans. Autom. Control 58, 2343–2348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Wang, L. Shen, J. Xia, H. Shen, J. Wang, Finite-time non-fragile \(\ell _2\)\(\ell _{\infty }\) control for jumping stochastic systems subject to input constraints via an event-triggered mechanism. J. Frankl. Inst. 355, 6371–6389 (2018)

    MATH  Google Scholar 

  19. L. Xing, C. Wen, Z. Liu, H. Su, J. Cai, Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62, 2071–2076 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Yan, H. Zhang, F. Yang, X. Zhan, C. Peng, Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading. IEEE Trans. Neural Netw. Learn. Syst. 29, 3588–3598 (2018)

    Article  MathSciNet  Google Scholar 

  21. H. Yan, C. Hu, H. Zhang, H.R. Karimi, X. Jiang, M. Liu, \(H_{\infty }\) output tracking control for networked systems with adaptively adjusted event-triggered scheme. IEEE Trans. Syst. Man Cybern. Syst. 49, 2050–2058 (2019)

    Google Scholar 

  22. X. You, C.C. Hua, X. Guan, Distributed adaptive event-triggered control for leader-following consensus of multi-agent systems. Asian J. Control 19, 2155–2164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Yue, E. Tian, Q.-L. Han, A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58, 475–481 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Zhang, Y. Shi, T. Chen, B. Huang, A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control 50, 1177–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Zhang, M. Mazo Jr., N. van de Wouw, Absolute stabilization of Lur’e systems under event-triggered feedback. IFAC 50, 15301–15306 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers for their constructive comments that helped improve the quality and presentation of this paper. The research of the first author was funded by the Ministry of Education and Training of Vietnam, under grant B2020-DQN-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Cong Huong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, D.C., Huynh, V.T. & Trinh, H. On Static and Dynamic Triggered Mechanisms for Event-Triggered Control of Uncertain Systems. Circuits Syst Signal Process 39, 5020–5038 (2020). https://doi.org/10.1007/s00034-020-01399-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01399-6

Keywords

Navigation