Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Auxiliary Variable-Based Identification Algorithms for Uncertain-Input Models

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This study presents two auxiliary variable-based identification algorithms for uncertain-input models. The auxiliary variable-based least squares algorithm can obtain unbiased parameter estimates by introducing suitable auxiliary variable vectors. Furthermore, an auxiliary variable-based recursive least squares algorithm is proposed to reduce the computational efforts. To validate the framework and algorithms developed, it has conducted a series of bench tests with computational experiments. The simulated numerical results/plots are consistent with the analytically derived results in terms of the feasibility and effectiveness of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. G.Y. Chen, M. Gan, C.L.P. Chen, H.X. Li, Basis function matrix based flexible coefficient autoregressive models: a framework for time series and nonlinear system modeling. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2900469

    Article  Google Scholar 

  2. G.Y. Chen, M. Gan, C.L.P. Chen, H.X. Li, A regularized variable projection algorithm for separable nonlinear least squares problems. IEEE Trans. Autom. Control 64(2), 526–537 (2019)

    MathSciNet  MATH  Google Scholar 

  3. J. Chen, B. Huang, F. Ding, Y. Gu, Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica 94, 194–204 (2018)

    Article  MathSciNet  Google Scholar 

  4. M. Gan, G.Y. Chen, L. Chen, C.L.P. Chen, Term selection for a class of separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2904952

    Article  Google Scholar 

  5. S. Gibson, B. Ninness, Robust maximum-likelihood estimation of multivariable dynamic systems. Automatica 41(10), 1667–1682 (2005)

    Article  MathSciNet  Google Scholar 

  6. F. Guo, H. Kodamana, Y.J. Zhao, B. Huang, Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational Bayesian approach. IEEE Trans. Ind. Inf. 13(6), 3047–3057 (2017)

    Article  Google Scholar 

  7. Y. Guo, B. Huang, State estimation incorporating infrequent, delayed and integral measurements. Automatica 58, 32–38 (2015)

    Article  MathSciNet  Google Scholar 

  8. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  9. H. Li, Y. Shi, Distributed model predictive control of constrained nonlinear systems with communication delays. Syst. Control Lett. 62(10), 819–826 (2013)

    Article  MathSciNet  Google Scholar 

  10. Q.Y. Liu, F. Ding, Auxiliary model-based recursive generalized least squares algorithm for multivariate output-error autoregressive systems using the data filtering. Circuits Syst. Signal Process. 38(2), 590–610 (2019)

    Article  Google Scholar 

  11. S.Y. Liu, F. Ding, L. Xu, T. Hayat, Hierarchical principle-based iterative parameter estimation algorithm for dual-frequency signals. Circuits Syst. Signal Process. 38(7), 3251–3268 (2019)

    Article  Google Scholar 

  12. J.X. Ma, F. Ding, Filtering-based multistage recursive identification algorithm for an input nonlinear output-error autoregressive systems by using the key term separation technique. Circuits Syst. Signal Process. 36(2), 577–599 (2017)

    Article  Google Scholar 

  13. Y.W. Mao, F. Ding, Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique. Nonlinear Dyn. 79(3), 1745–1755 (2015)

    Article  Google Scholar 

  14. Y.W. Mao, F. Ding, A. Alsaedi, T. Hayat, Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems. Signal Process. 128, 417–425 (2016)

    Article  Google Scholar 

  15. Y.W. Mao, F. Ding, L. Xu, T. Hayat, Highly efficient parameter estimation algorithms for Hammerstein nonlinear systems. IET Control Theory Appl. 13(4), 477–485 (2019)

    Article  MathSciNet  Google Scholar 

  16. I. Pen̄arrocha, R. Sanchis, P. Albertos, Estimation in multisensor networked systems with scarce measurements and time varying delays. Syst. Control Lett. 61(4), 555–562 (2012)

    Article  Google Scholar 

  17. R.S. Risuleo, G. Bottegal, H. Hjalmarsson, Modeling and identification of uncertain-input systems. Automatica 105, 130–141 (2019)

    Article  MathSciNet  Google Scholar 

  18. T. Söderström, U. Soverini, Errors-in-variables methods in system identification. Automatica 43(6), 939–958 (2007)

    Article  MathSciNet  Google Scholar 

  19. T. Soderstrom, U. Soverini, Errors-in-variables identification using maximum likelihood estimation in the frequency domain. Automatica 79, 131–143 (2017)

    Article  MathSciNet  Google Scholar 

  20. C. Wang, K.C. Li, Aitken-based stochastic gradient algorithm for ARX models with time delay. Circuits Syst. Signal Process. 38(6), 2863–2876 (2019)

    Article  Google Scholar 

  21. D.Q. Wang, L.W. Li, Y. Ji, Y.R. Yan, Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method. Appl. Math. Model. 54, 537–550 (2018)

    Article  MathSciNet  Google Scholar 

  22. D.Q. Wang, H.B. Liu, F. Ding, Highly efficient identification methods for dual-rate Hammerstein systems. IEEE Trans. Control Syst. Technol. 23(5), 1952–1960 (2015)

    Article  Google Scholar 

  23. D.Q. Wang, Y.R. Yan, Y.J. Liu, J.H. Ding, Model recovery for Hammerstein systems using the hierarchical orthogonal matching pursuit method. J. Comput. Appl. Math. 345, 135–145 (2019)

    Article  MathSciNet  Google Scholar 

  24. D.Q. Wang, S. Zhang, M. Gan, J.L. Qiu, A novel EM identification method for Hammerstein systems with missing output data. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.1109/TII.2019.2931792

    Article  Google Scholar 

  25. L. Xie, H.Z. Yang, B. Huang, FIR model identification of multirate processes with random delays using EM algorithm. AIChE J. 59, 4124–4132 (2013)

    Article  Google Scholar 

  26. X.Q. Yang, S. Yin, O. Kaynak, Robust identification of LPV time-delay system with randomly missing measurements. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2198–2208 (2018)

    Article  Google Scholar 

  27. Y.J. Zhao, A. Fatehi, B. Huang, Robust estimation of ARX models with time-varying time delays using variational Bayesian approach. IEEE Trans. Cybern. 48(2), 532–542 (2017)

    Article  Google Scholar 

  28. W. Zheng, H.B. Wang, H.R. Wang, Stability analysis and dynamic output feedback controller design of T-CS fuzzy systems with time-varying delays and external disturbances. J. Comput. Appl. Math. 358, 111–135 (2019)

    Article  MathSciNet  Google Scholar 

  29. W. Zheng, H.B. Wang, C.C. Hua, Z.M. Zhang, H.R. Wang, Dynamic output-feedback control for nonlinear continuous-time systems based on parametric uncertain subsystem and interval type-2 fuzzy model. J. Frankl. Inst. 355(16), 7962–7984 (2018)

    Article  MathSciNet  Google Scholar 

  30. W. Zheng, H.B. Wang, Z.M. Zhang, H.R. Wang, Adaptive robust finite-time control of mobile robot systems with unmeasurable angular velocity via bioinspired neurodynamics approach. Eng. Appl. Artif. Intell. 82, 330–344 (2019)

    Article  Google Scholar 

  31. W. Zheng, Z.M. Zhang, H.B. Wang, S.H. Wen, H.R. Wang, Stability analysis and dynamic output feedback control for fuzzy networked control systems with mixed time-varying delays and interval distributed time-varying delays. Neural. Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04204-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (No. 61973137) and the Joint Funds of the National Natural Science Foundation of China (No. U1734210).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhu, Q., Chandra, B. et al. Auxiliary Variable-Based Identification Algorithms for Uncertain-Input Models. Circuits Syst Signal Process 39, 3389–3404 (2020). https://doi.org/10.1007/s00034-019-01320-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01320-w

Keywords

Navigation