Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Firefly Algorithm-Based Particle Filter for Nonlinear Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A particle filter (PF) has been considered one of the most useful tools for nonlinear non-Gaussian systems. However, the estimation accuracy is limited by sample impoverishment due to resampling. Therefore, a firefly algorithm-based PF is proposed to solve this problem. In the proposed algorithm, the resampling step is performed based on the firefly algorithm. Finally, simulations are conducted to illustrate the superior performance of the proposed algorithm over that of a PF and a regularized particle filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Choe, T. Wang, F. Liu et al., Visual tracking based on particle filter with spline resampling. Multim. Tools Appl. 74(17), 7195–7220 (2015)

    Article  Google Scholar 

  2. J. Dash, B. Dam, R. Swain, Design of multipurpose digital FIR double-band filter using hybrid firefly differential evolution algorithm. Appl. Soft Comput. 59, 529–545 (2017)

    Article  Google Scholar 

  3. X. Fu, Y. Jia, An improvement on resampling algorithm of particle filters. IEEE Trans. Signal Process. 58(10), 5414–5420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.M. Farahani, A.A. Abshouri, B. Nasiri et al., A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 1(5), 448–453 (2011)

    Article  Google Scholar 

  5. I. Fister Jr., X.S. Yang et al., A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13(1), 34–46 (2013)

    Article  Google Scholar 

  6. M.L. Gao, X.H. He, D.S. Luo et al., Object tracking using firefly algorithm. IET Comput. Vis. 7(4), 227–237 (2013)

    Article  Google Scholar 

  7. M.L. Gao, L.L. Li, X.M. Sun et al., Firefly algorithm (FA) based particle filter method for visual tracking. Optik Int. J. Light Electron Opt. 126(18), 1705–1711 (2015)

    Article  Google Scholar 

  8. L. He, S. Huang, Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240, 152–174 (2017)

    Article  Google Scholar 

  9. M.S. Haque, S. Choi, J. Baek, Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Ind. Electron. 65(3), 2693–2703 (2018)

    Article  Google Scholar 

  10. X. Han, H. Lin, Y. Li et al., Adaptive fission particle filter for seismic random noise attenuation. IEEE Geosci. Remote Sens. Lett. 12(9), 1918–1922 (2015)

    Article  Google Scholar 

  11. J. Kim, M. Tandale, P.K. Menon et al., Particle filter for ballistic target tracking with glint noise. J. Guid. Control Dyn. 33(6), 1918–1921 (2010)

    Article  Google Scholar 

  12. M. Kiani, S.H. Pourtakdoust, State estimation of nonlinear dynamic systems using weighted variance-based adaptive particle swarm optimization. Appl. Soft Comput. 34, 1–17 (2015)

    Article  Google Scholar 

  13. S.H. Lee, J. Kang, S. Lee, Enhanced particle-filtering framework for vessel segmentation and tracking. Comput. Methods Programs Biomed. 148, 99–112 (2017)

    Article  Google Scholar 

  14. C. Musso, N. Oudjane, F.L. Gland. Improving regularized particle filters. IOP Publishing Physics Web. (2001). https://www.researchgate.net/publication/281913789_Improving_regularized_particle_filters. Accessed Jan 2001

  15. S.S. Mahtab, R. Abdolah, P. Naser, Classifying the weights of particle filters in nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 69–75 (2016)

    Google Scholar 

  16. K. Naidu, H. Mokhlis, A.H.A. Bakar et al., Application of firefly algorithm with online wavelet filter in automatic generation control of an interconnected reheat thermal power system. Int. J. Electr. Power Energy Syst. 63(1–2), 401–413 (2014)

    Article  Google Scholar 

  17. H. Nobahari, A. Sharifi, A Novel Heuristic filter based on ant colony optimization for non-linear systems state estimation. Commun. Comput. Inf. Sci. 316, 20–29 (2012)

    Google Scholar 

  18. H. Nobahari, A. Sharifi, H. Mohammadkarimi, Swarm intelligence techniques applied to nonlinear systems state estimation (Springer, Berlin, 2013)

    Book  Google Scholar 

  19. H. Nobahari, M. Raoufi, A. Sharifi. A heuristic filter based on Firefly Algorithm for nonlinear state estimation. In: Proceedings of 2016 IEEE Symposium Series on Computational Intelligence. (2016)

  20. A. Rodríguez, F. Moreno, Evolutionary computing and particle filtering: a hardware-based motion estimation system. IEEE Trans. Comput. 64(11), 3140–3152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Shan, T. Tan, Y. Wei, Real-time hand tracking using a mean shift embedded particle filter. Pattern Recogn. 40(7), 1958–1970 (2007)

    Article  MATH  Google Scholar 

  22. M.C. Tian, Y.M. Bo, Z.M. Chen et al., Firefly algorithm intelligence optimized particle filter. Acta Autom. Sin. 42(1), 89–97 (2016)

    MATH  Google Scholar 

  23. P. Wang, R.X. Gao, Adaptive resampling-based particle filtering for tool life prediction. J. Manuf. Syst. 37, 528–534 (2015)

    Article  Google Scholar 

  24. X.S. Yang, Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  25. X.S. Yang, Firefly algorithms for multimodal optimization. Mathematics 5792, 169–178 (2012)

    MathSciNet  MATH  Google Scholar 

  26. S. Yu, S. Zhu, Y. Ma et al., Enhancing firefly algorithm using generalized opposition-based learning. Computing 97(7), 741–754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.L. Zhang, H.W. Xia, G.C. Ma et al., Particle filter based on firefly algorithm optimization for relative navigation of non-cooperative target. J. Chin. Inert. Technol. 25(2), 269–274 (2017)

    Google Scholar 

  28. H. Zhou, Z. Deng, Y. Xia et al., A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing 216, 208–215 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 61573113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Liu, L. & Hou, J. Firefly Algorithm-Based Particle Filter for Nonlinear Systems. Circuits Syst Signal Process 38, 1583–1595 (2019). https://doi.org/10.1007/s00034-018-0927-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0927-0

Keywords

Navigation