Abstract
We propose a new algorithm for denoising of additive white Gaussian noise-corrupted signals, based on the intersection of confidence intervals (ICI) algorithm, called the fast intersection of confidence intervals (FICI) algorithm. The proposed approach combines the FICI algorithm, used for the adaptive filter support size selection, with the local polynomial approximation (LPA) method, used as a filter design tool. The LPA-FICI method, when compared to the existing ICI-based denoising method, reduces the computational complexity by up to N times, where N is the number of signal samples, resulting in significantly faster algorithm execution time, while maintaining the estimation accuracy close to the one achieved using the original ICI-based method. Furthermore, the proposed modifications allow the use of the LPA-FICI method in real-time signal processing. In conducted simulations, we have confirmed advantages of the proposed method on two commonly used benchmark signals corrupted with various noise strengths.
Similar content being viewed by others
References
C. Alippi, G. Boracchi, M. Roveri, A just-in-time adaptive classification system based on the intersection of confidence intervals rule. Neural Netw. 24(8), 791–800 (2011). doi:10.1016/j.neunet.2011.05.012. (Artificial Neural Networks: Selected Papers from ICANN 2010)
A.O. Boudraa, J.C. Cexus, EMD-based signal filtering. IEEE Trans. Instrum. Meas. 56(6), 2196–2202 (2007). doi:10.1109/TIM.2007.907967
A. Buades, B. Coll, J.M. Morel, Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010). doi:10.1137/090773908
P. Campisi, K. Egiazarian, (eds.): Blind Image Deconvolution Theory and Applications (CRC Press, Boca Raton, 2007). doi:10.1201/9781420007299
I. Djurovic, L. Stankovic, Modification of the ICI rule-based IF estimator for high noise environments. IEEE Trans. Signal Process. 52(9), 2655–2661 (2004). doi:10.1109/TSP.2004.832030
D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)
J. Fan, I. Gijbels, Local Polynomial Modelling and its Applications: Monographs on Statistics and Applied Probability, vol. 66 (CRC Press, Boca Raton, 1996)
A. Foi, V. Katkovnik, K. Egiazarian, Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007). doi:10.1109/TIP.2007.891788
A. Goldenshluger, A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Stat. 6(2), 135–170 (1997)
P. Jain, V. Tyagi, A survey of edge-preserving image denoising methods. Inf. Syst. Front. 18(1), 159–170 (2016). doi:10.1007/s10796-014-9527-0
V. Katkovnik, A new method for varying adaptive bandwidth selection. IEEE Trans. Signal Process. 47(9), 2567–2571 (1999). doi:10.1109/78.782208
V. Katkovnik, K. Egiazarian, J. Astola, Adaptive window size image de-noising based on intersection of confidence intervals (ICI) rule. J. Math. Imaging Vis. 16(3), 223–235 (2002). doi:10.1023/A:1020329726980
V. Katkovnik, K. Egiazarian, J. Astola, Adaptive Varying Scale Methods in Image Processing (Tampere International Center for Signal Processing, Tampere, 2003)
V. Katkovnik, K. Egiazarian, J. Astola, Local approximation techniques in signal and image processing. SPIE (2006). doi:10.1117/3.660178
V. Katkovnik, L. Stankovic, Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length. IEEE Trans. Signal Process. 46(9), 2315–2325 (1998). doi:10.1109/78.709514
A. Komaty, A.O. Boudraa, B. Augier, D. Dar-Emzivat, EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE Trans. Instrum. Meas. 63(1), 27–34 (2014). doi:10.1109/TIM.2013.2275243
Y. Kopsinis, S. McLaughlin, Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009). doi:10.1109/TSP.2009.2013885
J. Lerga, E. Grbac, V. Sucic, An ICI based algorithm for fast denoising of video signals. Automatika 55(4), 351–358 (2014). doi:10.7305/automatika.2014.12.525
J. Lerga, V. Sucic, Nonlinear IF estimation based on the pseudo WVD adapted using the improved sliding pairwise ICI rule. IEEE Signal Process. Lett. 16(11), 953–956 (2009). doi:10.1109/LSP.2009.2027651
J. Lerga, V. Sucic, M. Vrankić, Separable image denoising based on the relative intersection of confidence intervals rule. Informatica 22(3), 383–394 (2011)
J. Lerga, M. Vrankic, V. Sucic, A signal denoising method based on the improved ICI rule. IEEE Signal Process. Lett. 15, 601–604 (2008). doi:10.1109/LSP.2008.2001817
G. Segon, J. Lerga, V. Sucic, Improved LPA-ICI-based estimators embedded in a signal denoising virtual instrument. Signal Image Video Process. 1–8 (2016). doi:10.1007/s11760-016-0921-6
V. Sucic, J. Lerga, M. Vrankic, Adaptive filter support selection for signal denoising based on the improved ICI rule. Dig. Signal Process. 23(1), 65–74 (2013). doi:10.1016/j.dsp.2012.06.014
M. Tomic, S. Loncaric, D. Sersic, Adaptive spatio-temporal denoising of fluoroscopic x-ray sequences. Biomed. Signal Process. Control 7(2), 173–179 (2012). doi:10.1016/j.bspc.2011.02.003
M. Tomic, D. Sersic, Adaptive edge-preserving denoising by point-wise wavelet basis selection. IET Signal Process. 6(1), 1–7 (2012). doi:10.1049/iet-spr.2010.0240
A.B. Tsybakov, Introduction to Nonparametric Estimation (Springer, New York, 2009). doi:10.1007/b13794
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Volaric, I., Lerga, J. & Sucic, V. A Fast Signal Denoising Algorithm Based on the LPA-ICI Method for Real-Time Applications. Circuits Syst Signal Process 36, 4653–4669 (2017). https://doi.org/10.1007/s00034-017-0538-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-017-0538-1