Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A New Data-Reusing Algorithm Based on Minimum Norm and Minimum Disturbance Principles

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Aiming to accelerate convergence speed and reduce steady-state misalignment of adaptive filter, a new data-reusing algorithm is proposed. Different from conventional affine projection algorithm (APA) based on minimum disturbance principle (MDP), the proposed algorithm obtains its cost function based on a convex combination of the minimum norm principle (MNP) and the MDP. Weight factor (named as mixing parameter) used in the combination determines the approach for updating. The proposed algorithm has a performance similar to the APA when the mixing parameter closes to 0 and yields results to the data-reusing algorithm based on the MNP if the mixing parameter closes to 1. By minimizing mean-square deviation, the variable mixing parameter has a large value at initial stage and gradually decreases as iteration number increases. At the initial stage, the proposed algorithm achieves fast convergence since the MNP plays a leading role. At the steady-state, the proposed algorithm obtains a low misalignment since the MDP gives a major impact and the updated results have minimum disturbance from the previous ones. At the transition stage, the proposed algorithm is a combination of the APA and the MNP-based data-reusing algorithm. Simulation results show that the proposed algorithm exhibits faster convergence rate and lower steady-state misalignment than some other derivatives of the APA without significantly increasing computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Trans. Signal Process. 45(3), 631–639 (1997). doi:10.1109/78.558478

    Article  Google Scholar 

  2. J.H. Choi, S.H. Kim, W.K. Sang, Adaptive combination of affine projection and NLMS algorithms. Signal Process. 100(7), 64–70 (2014). doi:10.1016/j.sigpro.2014.01.015

    Article  Google Scholar 

  3. S.C. Douglas, A family of normalized LMS algorithms. Signal Process. Lett. 1(3), 49–51 (1994). doi:10.1109/97.295321

    Article  Google Scholar 

  4. S.E. Kim, S.J. Kong, W.J. Song, An affine projection algorithm with evolving order. IEEE Signal Process. Lett. 16(11), 937–940 (2009). doi:10.1109/LSP.2009.2027638

    Article  Google Scholar 

  5. K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67(5), 19–27 (1984). doi:10.1002/ecja.4400670503

    Article  MathSciNet  Google Scholar 

  6. P. Park, M. Jang, N. Kong, Scheduled-stepsize NLMS algorithm. IEEE Signal Process. Lett. 16(12), 1055–1058 (2009). doi:10.1109/LSP.2009.2026197

    Article  Google Scholar 

  7. P. Park, C.H. Lee, J.W. Ko, Mean-square deviation analysis of affine projection algorithm. IEEE Trans. Signal Process. 59(12), 5789–5799 (2011). doi:10.1109/TSP.2011.2165709

    Article  MathSciNet  Google Scholar 

  8. T. Paul, T. Ogunfunmi, On the convergence behavior of the affine projection algorithm for adaptive filters. IEEE Trans. Circuits Syst. I 58(8), 1813–1826 (2011). doi:10.1109/TCSI.2011.2106091

    Article  MathSciNet  Google Scholar 

  9. D.T.M. Slock, On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993). doi:10.1109/78.236504

    Article  MATH  Google Scholar 

  10. S.G. Sankaran, A.A.L. Beex, Tracking analysis results for NLMS and APA. in Proc. ICASSP-02, Orlando, USA, vol. 2, pp. 1105–1108 (2002). doi:10.1109/ICASSP.2002.5743992

  11. S.G. Sankaran, A.A.L. Beex, Convergence behavior of affine projection algorithms. IEEE Trans. Signal Process. 48(4), 1086–1096 (2000). doi:10.1109/78.827542

    Article  MathSciNet  MATH  Google Scholar 

  12. H.C. Shin, A.H. Sayed, Mean-square performance of a family of affine projection algorithms. IEEE Trans. Signal Process. 52(1), 90–102 (2004). doi:10.1109/TSP.2003.820077

    Article  MathSciNet  Google Scholar 

  13. H.-C. Shin, A.H. Sayed, W.-J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11(2), 132–135 (2004). doi:10.1109/LSP.2003.821722

    Article  Google Scholar 

  14. L.R. Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56(5), 1878–1893 (2008). doi:10.1109/TSP.2007.913142

    Article  MathSciNet  Google Scholar 

  15. J. Wang, Z. Lu, Y. Li, A. New, CDMA Encoding/Decoding Method for on-Chip Communication Network. IEEE Trans. VLSI Syst. 24(4), 1607–1611 (2015). doi:10.1109/TVLSI.2015.2471077

    Article  Google Scholar 

  16. B. Widrow, S.D. Sterns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, 1985), pp. 33–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Wang, Z. & Zhao, Z. A New Data-Reusing Algorithm Based on Minimum Norm and Minimum Disturbance Principles. Circuits Syst Signal Process 36, 1948–1969 (2017). https://doi.org/10.1007/s00034-016-0387-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0387-3

Keywords

Navigation