Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multichannel Time Skew Calibration for Time-Interleaved ADCs Using Clock Signal

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Time skew in time-interleaved ADCs (TI-ADCs) degrades the system’s linearity significantly.To address this problem, a time skew calibration method is proposed here that employs the divided clock signal as calibration signal. The divided squared clock signal containing a limited number of harmonics is demonstrated to be effective to extract the time skew, which is detected by comparing the estimated mean value of the product of two adjacent channels’ signals without extra reference ADC channel. The extracted time skew is subsequently compensated by a capacitor array-based digitally controlled delay block. Simulation results of a 4-channel 1GS/s 12-bit TI-ADC design demonstrated that the proposed calibration technique improved the spurious-free dynamic range of the ADC to 77 dB with a digitally controlled delay block that offers a time tuning resolution of 0.2 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.C. Black, D.A. Hodges, Time-interleaved converter arrays. IEEE J. Solid State Circuits 15(6), 1024–1029 (1980)

    Google Scholar 

  2. D. Camarero, K. Ben Kalaia, J.F. Naviner, P. Loumeau, Mixed-signal clock-skew calibration technique for time-interleaved ADCs. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(11), 3676–3687 (2008)

    Article  MathSciNet  Google Scholar 

  3. L. Chi Ho, P.J. Hurst, S.H. Lewis, A four-channel time-interleaved ADC with digital calibration of inter-channel timing and memory errors. IEEE J. Solid State Circuits 45(10), 2091–2103 (2010)

    Article  Google Scholar 

  4. V. Divi, G. Wornell, Blind calibration of timing skew in time-interleaved analog-to-digital converters. IEEE J. Sel. Top. Signal Process. 3(3), 509–522 (2009)

    Article  Google Scholar 

  5. N.L. Dortz et al., A 1.62GS/s Time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS. IEEE ISSCC Dig. Tech. Papers, (2014) pp. 386–387

  6. M. El-Chammas, B. Murmann, A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE J. Solid State Circuits 46(4), 838–847 (2011)

    Article  Google Scholar 

  7. S.K. Gupta, M.A. Inerfield, J. Wang, A 1-GS/s 11-bit ADC With 55-dB SNDR, 250-mW power realized by a high bandwidth scalable time-interleaved architecture. IEEE J. Solid State Circuits 41(12), 2650–2657 (2006)

    Article  Google Scholar 

  8. A. Haftbaradaran, K.W. Martin, A background sample-time error calibration technique using random data for wide-band high-resolution time-interleaved ADCs. IEEE Trans. Circuits Syst. II Exp. Br. 55(3), 234–238 (2008)

    Article  Google Scholar 

  9. C.C. Hsu, F.C. Huang, C.Y. Shih, C.C. Huang, Y.H. Lin, C.C. Lee, B. Razavi, An 11b 800MS/s time-interleaved ADC with digital background calibration, in IEEE ISSCC Dig. Tech. Papers (2007), pp. 464–465

  10. S. Huang, B.C. Levy, Adaptive blind calibration of timing offset and gain mismatch for two-channel time-interleaved ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 53(6), 1278–1288 (2006)

    Article  Google Scholar 

  11. H. Jin, E.K.F. Lee, A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(7), 603–613 (2000)

    Article  Google Scholar 

  12. N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, K. Kobayashi, Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(3), 261–271 (2001)

    Article  Google Scholar 

  13. Q. Lei, Y. Zheng, D. Zhu, S. Liter, A Statistic based time skew calibration method for time-interleaved ADCs, in IEEE International Symposium on Circuits and Systems (2014), pp. 2373–2376

  14. Y.C. Lim, Y.X. Zou, J.W. Lee, S.C. Chan, Time-interleaved analog-to-digital-converter compensation using multichannel filters. IEEE Trans. Circuit Syst. I Regul. Pap. 56(10), 2234–2247 (2009)

    Article  MathSciNet  Google Scholar 

  15. S. Munkyo, M.J.W. Rodwell, U. Madhow, Comprehensive digital correction of mismatch errors for a 400-msamples/s 80-dB SFDR time-interleaved analog-to-digital converter. IEEE Trans. Microw Theory Tech. 53, 1072–1082 (2005)

    Article  Google Scholar 

  16. B. Setterberg, K. Poulton, S. Ray, D.J. Huber, V. Abramzon, G. Steinbach, J.P. Keane, B. Wuppermann, M. Clayson, M. Martin, R. Pasha, E. Peeters, A. Jacobs, F. Demarsin, A. Al-Adnani, P. Brandt, A 14b 2.5GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction, in IEEE ISSCC Dig. Tech. Papers (2013), pp. 466–467

  17. D. Stepanović, B. Nikolić, A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9dB SNDR and 3dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid State Circuits 48(4), 971–982 (2013)

    Article  Google Scholar 

  18. Sunghyuk Lee, Anantha P. Chandrakasan, Hae-Seung Lee, A 1GS/s 10b 18.9mW time-interleaved SAR ADC with background timing-skew calibration, in IEEE ISSCC Dig. Tech. Papers (2014), pp. 384–385

  19. T.H. Tsai, P.J. Hurst, S.H. Lewis, Bandwidth mismatch and its correction in time-interleaved analog-to-digital converters. IEEE Trans. Circuits Syst. II Exp. Br. 53(10), 1133–1137 (2006)

    Article  Google Scholar 

  20. T.H. Tsai, P.J. Hurst, S.H. Lewis, Correction of mismatches in a time-interleaved analog-to-digital converter in an adaptively equalized digital communication receiver. IEEE Trans. Circuits Syst. I Regul. Pap. 56(2), 307–319 (2009)

    Article  MathSciNet  Google Scholar 

  21. C. Tsang, Y. Chiu, J. Vanderhaegen, S. Hoyos, C. Chen, R. Brodersen, B. Nikolic, Background ADC calibration in digital domain, in Proceedings of the IEEE CICC (2008), pp. 301–304

  22. C. Vogel, S. Saleem, S. Mendel, Adaptive blind compensation of gain and timing mismatches in -channel time-interleaved ADCs, in Proceedings 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2008), pp. 49–52

  23. C. Vogel, The impact of combined channel mismatch effects in time-interleaved ADCs. IEEE Trans. Instrum. Meas. 54(2), 415–427 (2005)

    Article  Google Scholar 

  24. Chung-Yi Wang, Wu Jieh-Tsorng, A background timing-skew calibration technique for time-interleaved analog-to-digital converters. IEEE Trans. Circuits Syst. II Exp. Br. 53(4), 299–303 (2006)

    Article  Google Scholar 

  25. Chung-Yi Wang, Wu Jieh-Tsorng, A multiphase timing-skew calibration technique using zero-crossing detection. IEEE Trans. Circuits Syst. I Reg. Pap. 56(6), 1102–1114 (2009)

    Article  MathSciNet  Google Scholar 

  26. H. Wei, P. Zhang, B.D. Sahoo, B. Razavi, An 8Bit 4GS/s 120mW CMOS ADC. IEEE J. Solid State Circuits 47(11), 2763–2772 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qiu.

Appendix

Appendix

Here, we derive the relation between time skew \(\Delta t_{m,m+1}\) and \(M_{m,m+1}\), which is the multiplication of digital outputs of each two adjacent channels. The digitized outputs x[n] are derived in Eq. (2). To observe the effect of offset and gain mismatch on time skew estimation, we introduce the offset mismatch \(b_{m}\) and gain mismatch \(a_{m}\) into Eq. (2); therefore,

$$\begin{aligned} x[n]=(1+a_m )\frac{4A}{\pi }\sum _{k=1}^I {\frac{\sin (2\pi (2k-1)f_0 nT_s )}{2k-1}} +q_B [n]+b_m . \end{aligned}$$
(10)

The multiplication of mth and \(m+1\)th channel outputs is

$$\begin{aligned}&M_{m,m+1} [n]=x_m [n]\cdot x_{m+1} [n]\nonumber \\&\quad =\left( (1+a_m )\frac{4A}{\pi }\sum _{k_m =1}^I {\frac{\sin (2\pi (2k_m -1)f_0 nT_s )}{2k_m -1}} +q_B [n]+b_m \right) \nonumber \\&\quad \times \left( (1+a_{m+1} )\frac{4A}{\pi }\sum _{k_{m+1} =1}^I {\frac{\sin (2\pi (2k_{m+1} -1)f_0 (nT_s +T_s /M+\Delta t_{m,m+1} ))}{2k_{m+1} -1}} \right. \nonumber \\&\qquad \left. +\, q_B [n]+b_{m+1} \right) \nonumber \\&\quad =(1+a_m )(1+a_{m+1} )\frac{16A^{2}}{\pi ^{2}}\nonumber \\&\qquad \sum _{k=1}^I {\frac{\sin (2\pi (2k-1)f_0 nT_s )\cdot \sin (2\pi (2k-1)f_0 (nT_s +\,T_s /M+\Delta t_{m,m+1} )}{(2k-1)^{2}}}\nonumber \\&\quad \qquad +(1+a_m )(1+a_{m+1} )\frac{16A^{2}}{\pi ^{2}}\nonumber \\&\qquad \mathop {\mathop {\sum }\limits _{k_i ,k_j =1}}\limits _ {i\ne j}^I {\frac{\sin (2\pi (2k_i -1)f_0 nT_s )\cdot \sin (2\pi (2k_j -1)f_0 (nT_s +T_s /M+\Delta t_{m,m+1} )}{(2k_i -1)(2k_j -1)}}\nonumber \\&\quad \qquad +(q_B [n]+b_m )(1+a_{m+1} )\frac{4A}{\pi }\nonumber \\&\qquad \sum _{k_{m+1} =1}^I {\frac{\sin (2\pi (2k_{m+1} -1)f_0 (nT_s +T_s /M+\Delta t_{m,m+1} ))}{(2k_{m+1} -1)}}\nonumber \\&\qquad +(q_B [n]+b_{m+1} )(1+a_m )\frac{4A}{\pi }\sum _{k_m =1}^I {\frac{\sin (2\pi (2k_m -1)f_0 nT_s )}{(2k_m -1)}} \nonumber \\&\quad \qquad +(q_B [n]+b_m )(q_B [n]+b_{m +1} )\nonumber \\&\quad =(1+a_m )(1+a_{m+1} )\frac{8A}{\pi ^{2}}^{2}\sum _{k=1}^I {\frac{\cos (2\pi (2k-1)f_0 (T_s /M+\Delta t_{m,m+1} ))}{(2k-1)^{2}}} \nonumber \\&\qquad +o[n]+e_B [n]+b_m b_{m+1} , \end{aligned}$$
(11)

where \(\Delta t_{m,m+1}\) is the time skew between channel m and channel \(m+1\), and M is the number of channels. \(e_{\mathrm{B}}[n]\) indicates the components related to zero-mean quantization noise \(q_{\mathrm{B}}[n]\). o[n] represents the components related to n. In Eq. (11), the gain mismatch \(a_{m}\) will affect the time skew estimation. However, from Fig. 4, if the \(f_{0}\) is selected close to \(f_{\mathrm{s}}\), the estimation value approximates to zero, which means the effect of gain mismatch is limited. Also, the effect of offset mismatch \(b_{m}\) is negligible for time skew calibration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Zheng, Y. & Siek, L. Multichannel Time Skew Calibration for Time-Interleaved ADCs Using Clock Signal. Circuits Syst Signal Process 35, 2669–2682 (2016). https://doi.org/10.1007/s00034-015-0177-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0177-3

Keywords

Navigation