Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

GLRT-based Detection Algorithm for Polarimetric MIMO Radar Against SIRV Clutter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper mainly deals with target detecting problem using polarimetric Multiple Input Multiple Output (MIMO) radar against Spherically Invariant Random Vector (SIRV) clutter. First, we develop the MIMO signal model to two polarimetric channels and SIRV clutter-dominated scenario, and then the Generalized Likelihood Ratio Test (GLRT) is derived with known covariance structure. Meanwhile, three estimation strategies of covariance, such that Sampled Covariance Matrix (SCM), Normalized Sampled Covariance Matrix (NSCM) and Fixed Point Estimation (FPE) matrix, are introduced to make derived receiver fully adaptive. A thorough performance assessment is given by several numerical examples, and the results show that the polarimetric diversity and the spatial diversity can be exploited to improve the detection performance, and it outperforms the conventional polarimetric phased-array counterpart. Meanwhile, the FPE strategy is more suitable to implement the adaptive detection algorithm, the adaptive loss of which is completely acceptable in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Conte, A. De Maio, CFAR detection of distributed targets in non-Gaussian disturance. IEEE Trans. Aerosp. Electron. Syst. 38(2), 612–621 (2002)

    Article  Google Scholar 

  2. E. Conte, A. De Maio, Rao test and Wald test based detection of distributed targets in non-Gaussian noise. IEEE Trans. Aerosp. Electron. Syst. 39(2), 568–582 (2003)

    Article  Google Scholar 

  3. E. Conte, M. Longo, Modelling and simulation of non-Rayleigh radar clutter. IEE Proc. F 138(2), 121–130 (1991)

    Google Scholar 

  4. E. Conte, M. Di Bisceglie, C. Galdi, G. Ricci, A procedure for measuring the coherence length of the sea texture. IEEE Trans. Instrum. Meas. 46(4), 836–841 (1997)

    Article  Google Scholar 

  5. A. De Maio, G. Alfano, Polarimetric adaptive detection in non-Gaussian noise. Signal Process. 83, 297–306 (2003)

    Article  MATH  Google Scholar 

  6. A. De Maio, M. Lops, Design principles of MIMO radar detectors. IEEE Trans. Aerosp. Electron. Syst. 43(3), 886–898 (2007)

    Article  Google Scholar 

  7. A. De Maio, G. Alfano, E. Conte, Polarization diversity detection in compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst. 10(1), 114–131 (2004)

    Article  Google Scholar 

  8. A. De Maio, G. Ricci, A polarimetric adaptive matched filter. Signal Process. 81, 2583–2589 (2001)

    Article  MATH  Google Scholar 

  9. E. Fishler, A. Haimovich, R.S. Blum, L. Cimini, D. Chizhik, R. Valenzuela, Spatial diversity in radars—Models and detection performance. IEEE Trans. Signal Process. 54(3), 823–838 (2006)

    Article  Google Scholar 

  10. D.R. Fuhrmann, G.S. Antonio, Transmit beamforming for MIMO radar systems using partial signal correlation, in Proceedings of 38th Asilomar Conference Signals, Systems, Computers, vol. 1 (2004), pp. 295–299

    Google Scholar 

  11. S. Gogineni, A. Nehorai, Polarimetric MIMO radar with distributed antennas for target detection. IEEE Trans. Signal Process. 58(3), 1689–1697 (2010)

    Article  MathSciNet  Google Scholar 

  12. D. Giuli, Polarization diversity in radars. Proc. IEEE 74(2), 245–269 (1986)

    Article  MathSciNet  Google Scholar 

  13. F. Gini, M.V. Greco, Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal Process. 82(12), 1847–1859 (2002). Special Section on Signal Process. with Heavy Tailed Distributions

    Article  Google Scholar 

  14. A. Haimovich, R.S. Blum, L.J. Cimini, MIMO radar with widely separeted antennas. IEEE Signal Process. Mag. 25(1), 116–129 (2008)

    Article  Google Scholar 

  15. P. Lombardo, D. Pastina, T. Bucciarelli, Adaptive polarimetric target detection with coherent radar Part I: Detection against Gaussian background. IEEE Trans. Aerosp. Electron. Syst. 37(4), 1194–1206 (2001)

    Article  Google Scholar 

  16. P. Lombardo, D. Pastina, T. Bucciarelli, Adaptive polarimetric target detection with coherent radar. Part II. Detection against non-Gaussian background. IEEE Trans. Aerosp. Electron. Syst. 37(4), 1207–1220 (2001)

    Article  Google Scholar 

  17. N. Lehmann, A.M. Haimovich, R.S. Blum, L. Cimini, MIMO-radar application to moving target detection in homogenous clutter, in Adaptive Sensor Array Processing Workshop at MIT Lincoln Laboratory, Waltham, MA, July (2006)

    Google Scholar 

  18. N.H. Lehmann, A.M. Haimovich, R.S. Blum, L.J. Cimini, High resolution capabilities of MIMO radar, in Proceedings of 40th Asilomar Conference Signals, Systems and Computers (2006), pp. 25–30

    Chapter  Google Scholar 

  19. J. Li, P. Stoica, MIMO radar with colocated antennas. IEEE Signal Process. Mag. 24(5), 106–114 (2007)

    Article  Google Scholar 

  20. J. Li, P. Stoica, Y. Xie, On probing signal design for MIMO radar. IEEE Trans. Signal Process. 55(6), 4151–4161 (2007)

    Article  MathSciNet  Google Scholar 

  21. J. Li, P. Stoica, L. Xu, W. Roberts, On parameter identifiability of MIMO radar. IEEE Signal Process. Lett. 14(12), 968–971 (2007)

    Article  Google Scholar 

  22. L.M. Novak, M.B. Sechtin, M.J. Cardullo, Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. Aerosp. Electron. Syst. 25(2), 150–165 (1989)

    Article  Google Scholar 

  23. L.M. Novak, M.C. Burl, W.W. Irving, Optimal polarimetric processing for enhanced target detection. IEEE Trans. Aerosp. Electron. Syst. 29(1), 234–244 (1993)

    Article  Google Scholar 

  24. H. Park, J. Li, H. Wang, Polarization-space-time domain generalized likelihood ratio detection of radar targets. Signal Process. 41, 153–164 (1995)

    Article  MATH  Google Scholar 

  25. F. Pascal, Y. Chitour, J.P. Ovarlez, P. Forster, P. Larzabal, Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis. IEEE Trans. Signal Process. 56(1), 34–48 (2008)

    Article  MathSciNet  Google Scholar 

  26. F. Pascal, P. Forster, J.P. Ovarlez, P. Larzabal, Performance analysis of covariance matrix estimates in impulsive noise. IEEE Trans. Signal Process. 56(6), 2206–2217 (2008)

    Article  MathSciNet  Google Scholar 

  27. K.J. Sangston, K.R. Gerlach, Coherent detection of radar targets in a non-Gaussian background. IEEE Trans. Aerosp. Electron. Syst. 30(2), 330–340 (1994)

    Article  Google Scholar 

  28. L. Xu, J. Li, Iterative generalized likelihood ratio test for MIMO radar. IEEE Trans. Signal Process. 55(6), 2375–2385 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjiang Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, G., Kong, L. & Yang, X. GLRT-based Detection Algorithm for Polarimetric MIMO Radar Against SIRV Clutter. Circuits Syst Signal Process 31, 1033–1048 (2012). https://doi.org/10.1007/s00034-011-9360-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9360-3

Keywords

Navigation