Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficient Differential Pixel Value Coding in CABAC for H.264/AVC Lossless Video Compression

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Since context-based adaptive binary arithmetic coding (CABAC) as the entropy coding method in H.264/AVC was originally designed for lossy video compression, it is inappropriate for lossless video compression. Based on the fact that there are statistical differences of residual data between lossy and lossless video compression, we propose an efficient differential pixel value coding method in CABAC for H.264/AVC lossless video compression. Considering the observed statistical properties of the differential pixel value in lossless coding, we modified the CABAC encoding mechanism with the newly designed binarization table and the context-modeling method. Experimental results show that the proposed method achieves an approximately 12% bit saving, compared to the original CABAC method in the H.264/AVC standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Editors’ draft revision to ITU-T Rec. H.264|ISO/IEC 14496-10 Advanced Video Coding—in preparation for ITU-T SG17 AAP Consent, Document JVT-AD205.doc, Joint Video Team of ISO/IEC 14496-10 AVC, ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, 2009

  2. R.G. Gallager, D.C. Van Voorhis, Optimal source codes for geometrically distributed integer alphabets. IEEE Trans. Inf. Theory 21(2), 228–230 (1975)

    Article  MATH  Google Scholar 

  3. J. Heo, Y.-S. Ho, Efficient level and zero coding methods for H.264/AVC lossless intra coding. IEEE Signal Process. Lett. 17(1), 87–90 (2010)

    Article  Google Scholar 

  4. J. Heo, S.-H. Kim, Y.-S. Ho, Improved CAVLC for H.264/AVC lossless intra coding. IEEE Trans. Circuits Syst. Video Technol. 20(2), 213–222 (2010)

    Article  Google Scholar 

  5. Joint Video Team, Reference Software Version 13.2 [Online]. Available: http://iphome/hhi.de/shehring/tml/download/old_jm/jm13.2.zip

  6. Y.-L. Lee, K.-H. Han, G.J. Sullivan, Improved lossless intra coding for H.264/MPEG-4 AVC. IEEE Trans. Image Process. 15(9), 2610–2615 (2006)

    Article  Google Scholar 

  7. H. Malvar, A. Hallapuro, M. Karczewicz, L. Kerofsky, Low-complexity transform and quantization in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 13(7), 598–603 (2003)

    Article  Google Scholar 

  8. D. Marpe, H. Schwarz, T. Wiegand, Context-based adaptive binary arithmetic coding in the H.264/AVC video compression. IEEE Trans. Circuits Syst. Video Technol. 13(7), 620–636 (2003)

    Article  Google Scholar 

  9. J.-H. Nam, D. Sim, Lossless video coding based on pixel-wise prediction. Multimed. Syst. 14(5), 291–298 (2008)

    Article  Google Scholar 

  10. I.E.G. Richardson, H.264/MPEG-4, part 10, in H.264 and MPEG-4 Video Compression (Wiley, New York, 2003), pp. 201–207

    Chapter  Google Scholar 

  11. K. Sayood, Lossless image compression, in Introduction to Data Compression (Morgan Kaufmann, San Mateo, 2006), pp. 170–172

    Google Scholar 

  12. G.J. Sullivan, T. Wiegand, Video compression—from concepts to the H.264/AVC standard. Proc. IEEE 93(1), 18–31 (2005)

    Article  Google Scholar 

  13. G.J. Sullivan, P. Topiwala, A. Luthra, The H.264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions, in Proc. SPIE Conf., Special Session Adv. New Emerg. Standard: H.264/AVC (2004), pp. 454–474

    Google Scholar 

  14. J. Teuhola, A compression method for clustered bit-vectors. Inf. Process. Lett. 7, 308–311 (1978)

    Article  MATH  Google Scholar 

  15. M.J. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)

    Article  Google Scholar 

  16. T. Wiegand, G.J. Sullivan, G. Bjøntegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Heo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, J., Ho, YS. Efficient Differential Pixel Value Coding in CABAC for H.264/AVC Lossless Video Compression. Circuits Syst Signal Process 31, 813–825 (2012). https://doi.org/10.1007/s00034-011-9338-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9338-1

Keywords

Navigation