Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust Finite-Time H Control for Nonlinear Jump Systems via Neural Networks

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a neural network-based robust finite-time H control design approach for a class of nonlinear Markov jump systems (MJSs). The system under consideration is subject to norm bounded parameter uncertainties and external disturbance. In the proposed framework, the nonlinearities are initially approximated by multilayer feedback neural networks. Subsequently, the neural networks undergo piecewise interpolation to generate a linear differential inclusion model. Then, based on the model, a robust finite-time state-feedback controller is designed such that the nonlinear MJS is finite-time bounded and finite-time stabilizable. The H control is specified to ensure the elimination of the approximation errors and external disturbances with a desired level. The controller gains can be derived by solving a set of linear matrix inequalities. Finally, simulation results are given to illustrate the effectiveness of the developed theoretic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Amato, M. Ariola, Finite-time control of discrete-time linear systems. IEEE Trans. Autom. Control 50(5), 724–729 (2005)

    Article  MathSciNet  Google Scholar 

  2. F. Amato, M. Ariola, C.T. Abdallah, Dynamic output feedback finite-time control of LIT systems subject to parametric uncertainties and disturbances, in Proc. of the European Control Conference (Springer, Berlin, 1999), pp. 1176–1180

    Google Scholar 

  3. F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001)

    Article  MATH  Google Scholar 

  4. F. Amato, M. Ariola, C. Cosentino, Finite-time stabilization via dynamic output feedback. Automatica 42(2), 337–342 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Assawinchaichote, S.K. Nguang, P. Shi, El K. Boukas, H-infinity fuzzy state-feedback control design for nonlinear systems with D-stability constraints: an LMI approach. Math. Comput. Simul. 78(4), 514–531 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. E.K. Boukas, P. Shi, K. Benjelloun, On stabilization of uncertain linear systems with jump parameters. Int. J. Control 72(9), 842–850 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. S.P. Boyd, L.E. Ghaoui, E. Feron, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    MATH  Google Scholar 

  8. Y.Y. Cao, J. Lam, Robust H control of uncertain Markovian jump systems with time-delay. IEEE Trans. Autom. Control 45, 77–83 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Dorato, Short time stability in linear time-varying systems, in Proc of the IRE International Convention Record, Part 4. New York (1961), pp. 83–87

  10. J.C. Doyle, K. Glover, P. Khargonekar, B.A. Francis, State-space solutions to standard H 2 and H control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Gong, B. Su, Robust H-infinity filtering of convex polyhedral uncertain time-delay fuzzy systems. Int. J. Innov. Comput. Inf. Control 4(4), 793–802 (2008)

    Google Scholar 

  12. J.H. Kim, H.B. Park, H state feedback control for generalized continuous/discrete time-delay system. Automatica 35, 1443–1451 (1999)

    Article  MATH  Google Scholar 

  13. N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22(1) 1021–1025 (1961)

    MathSciNet  Google Scholar 

  14. N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22(2) 1141–1146 (1961)

    MathSciNet  Google Scholar 

  15. N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22(3) 1289–1294 (1961)

    MathSciNet  Google Scholar 

  16. S. Limanond, J. Si, Neural-network-based control design: an LMI approach. IEEE Trans. Neural Netw. 9(6), 1422–1429 (1998)

    Article  Google Scholar 

  17. C.L. Lin, Control of perturbed systems using neural networks. IEEE Trans. Neural Netw. 9, 1046–1050 (1998)

    Article  Google Scholar 

  18. C.L. Lin, T.Y. Lin, An H design approach for neural net-based control schemes. IEEE Trans. Autom. Control 46, 1599–1605 (2001)

    Article  MATH  Google Scholar 

  19. X. Mao, Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 79(1), 45–67 (1999)

    Article  MATH  Google Scholar 

  20. J. Qiu, H. Yang, P. Shi, Y. Xia, Robust H-infinity control for a class of discrete-time Markovian jump systems with time-varying delays based on delta operator. Circuits Syst. Signal Process. 27(5), 627–643 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Shi, M. Mahmoud, J. Yi, A. Ismail, Worst case control of uncertain jumping systems with multi-state and input delay information. Inf. Sci. 176(2), 186–200 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. C.E. Souza, D.F. Coutinho, Robust stability of a class of uncertain Markov jump nonlinear systems. IEEE Tran. Autom. Control 51(11), 1825–1831 (2006)

    Article  Google Scholar 

  23. J.A.K. Suykens, J. Vandewalle, B.D. Moor, Artificial Neural Networks for Modeling and Control of Non-linear Systems (Kluwer, Boston, 1996)

    Google Scholar 

  24. K. Tanaka, An approach to stability criteria of neural-network control systems. IEEE Trans. Neural Netw. 7(3), 629–642 (1996)

    Article  Google Scholar 

  25. Y. Wang, Z. Sun, H-infinity control of networked control system via LMI approach. Int. J. Innov. Comput. Inf. Control 3(2), 343–352 (2007)

    Google Scholar 

  26. Y. Wang, L. Xie, C.E. de Souza, Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1992)

    Article  Google Scholar 

  27. L. Weiss, E.F. Infante, Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 2(2), 54–59 (1967)

    Article  MathSciNet  Google Scholar 

  28. M. Wu, F. Liu, P. Shi, Y. He, R. Yokoyama, Improved free-weighting matrix approach for stability analysis of discrete-time recurrent neural networks with time-varying delay. IEEE Trans. Circuits Syst. II, Express Briefs 55(7), 690–694 (2008)

    Article  Google Scholar 

  29. L. Wu, P. Shi, H. Gao, C. Wang, Robust H-infinity filtering for 2-D Markovian jump systems. Automatica 44(7), 1849–1858 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Xia, M. Xia, L. Liu, LMI conditions for global asymptotic stability of neural networks with discrete and distributed delays. ICIC Express Lett. 2(3), 257–262 (2008)

    Google Scholar 

  31. S.Y. Xu, T.W. Chen, J. Lam, Robust H filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Autom. Control 48(5), 900–907 (2003)

    Article  MathSciNet  Google Scholar 

  32. J. Yi, G. Yang, Y. Zhu, Z. Tang, Dynamics analysis and a coefficient tuning method in a chaotic neural network. ICIC Express Lett. 2(4), 323–330 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant No. 60974001), the Program for New Century Excellent Talents in University (Grant No. 050485), Six Projects Sponsoring Talent Summits of Jiangsu, and the Engineering and Physical Sciences Research Council, UK (EP/F029195).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, X., Liu, F. & Shi, P. Robust Finite-Time H Control for Nonlinear Jump Systems via Neural Networks. Circuits Syst Signal Process 29, 481–498 (2010). https://doi.org/10.1007/s00034-010-9158-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9158-8

Keywords

Navigation