Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Low-Power Memory-Efficient Resampling Architecture for Particle Filters

  • Low Power Digital Filters
  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a compact threshold-based resampling algorithm and architecture for efficient hardware implementation of particle filters (PFs). By using a simple threshold-based scheme, this resampling algorithm can reduce the complexity of hardware implementation and power consumption. Simulation results indicate that this algorithm has approximately equal performance with the traditional systematic resampling (SR) algorithm when the root-mean-square error (RMSE) and lost track are considered. Experimental comparison of the proposed hardware architecture with those based on the SR and the residual systematic resampling (RSR) algorithms was conducted on a Xilinx Virtex-II Pro field programmable gate array (FPGA) platform in the bearings-only tracking context, and the results establish the superiority of the proposed architecture in terms of high memory efficiency, low power consumption, and low latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Athalye, M. Bolic, S. Hong, P.M. Djuric, Architectures and memory schemes for sampling and resampling in particle filters. Digit. Signal Process. Work. 1, 92–96 (2004)

    Google Scholar 

  2. A. Athalye, M. Bolic, S. Hong, P.M. Djuric, Generic hardware architectures for sampling and resampling in particle filters. EURASIP J. Appl. Signal Process. 2005(17), 2888–2902 (2005)

    Article  MATH  Google Scholar 

  3. E.R. Beadle, P.M. Djuric, A fast weighted Bayesian bootstrap filter for nonlinear model state estimation. IEEE Trans. Aerosp. Electron. Syst. 33(1), 338–343 (1997)

    Article  Google Scholar 

  4. M. Bolic, Architectures for efficient implementation of particle filters. Ph.D. Dissertation, Stony Brook University, NY (2004)

  5. M. Bolic, P.M. Djuric, S. Hong, New resampling algorithms for particle filters. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP’03) 2, 589–592 (2003)

    Google Scholar 

  6. M. Bolic, A. Athalye, P.M. Djuric, S. Hong, Algorithmic modification of particle filters for hardware implementation. Eur. Signal Process. Conf. (EUSIPCO’04) 1, 1641–1644 (2004)

    Google Scholar 

  7. M. Bolic, P.M. Djuric, S. Hong, Resampling algorithms for particle filters: a computational complexity perspective. EURASIP J. Appl. Signal Process. 2004(15), 2267–2277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Doucet, X.-D. Wang, Monte Carlo methods for signal processing: a review in the statistical signal processing context. IEEE Signal Process. Mag. 22(6), 152–170 (2005)

    Article  Google Scholar 

  9. A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  10. A. Doucet, N. de Freitas, N. Gordon (eds.), Sequential Monte Carlo Methods in Practice (Springer, New York, 2004)

    Google Scholar 

  11. S.-C. Du, Z.-G. Shi, W. Zang, K.-S. Chen, Using interacting multiple model particle filter to track airborne targets hidden in blind Doppler. J. Zhejiang Univ. Sci. A 8(8), 1277–1282 (2007)

    Article  MATH  Google Scholar 

  12. N.J. Gordon, D.J. Salmond, A.F.M. Smith, A novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEE Proc. Radar Sonar. Navig. 140(2), 107–113 (1993)

    Google Scholar 

  13. J.D. Hol, T.B. Schön, F. Gustafsson, On resampling algorithms for particle filters. Nonlinear Stat. Signal Process. Work. 1, 79–82 (2006)

    Article  Google Scholar 

  14. S.-H. Hong, Z.-G. Shi, K.-S. Chen, Compact resampling algorithm and hardware architecture for particle filters. IEEE Int. Conf. Commun. Circ. Syst. (ICCCAS’08) 2, 886–890 (2008)

    Article  Google Scholar 

  15. S.-H. Hong, Z.-G. Shi, K.-S. Chen, Novel roughening algorithm and hardware architecture for bearings-only tracking using particle filter. J. Electromagn. Wave 22, 411–422 (2008)

    Article  Google Scholar 

  16. S.-H. Hong, Z.-G. Shi, K.-S. Chen, Simplified algorithm and hardware implementation for particle filter applied to bearings-only tracking. J. Electron. Info. Tech. 31(1), 91–100 (2009) (in Chinese)

    Google Scholar 

  17. K. Muhammad, Algorithmic and architectural techniques for low power signal processing. Ph.D. Dissertation, Purdue Univ., West Lafayette, IN (1999)

  18. J.M. Rabaey, Digital Integrated Circuits: A Design Perspective (Prentice-Hall, Englewood Cliffs, 1996)

    Google Scholar 

  19. B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications (Artech House, Norwood, 2004)

    MATH  Google Scholar 

  20. A.C. Sankaranarayanan, R. Chellappa, A. Srivastave, Algorithmic and architectural design methodology for particle filters in hardware. IEEE Int. Conf. Comput. Des. (ICCD’05) 1, 275–280 (2005)

    Google Scholar 

  21. Z.-G. Shi, S.-H. Hong, J.-M. Chen, K.-S. Chen, Y.-X. Sun, Particle filter-based synchronization of chaotic Colpitts circuits combating AWGN channel distortion. Circ. Syst. Signal Process. 27(6), 833–845 (2008)

    Article  MATH  Google Scholar 

  22. Z.-G. Shi, S.-H. Hong, K.-S. Chen, Experimental study on tracking the state of analog Chua’s circuit with particle filter for chaos synchronization. Phys. Lett. A 372(34), 5575–5580 (2008)

    Article  Google Scholar 

  23. Z.-G. Shi, S.-H. Hong, K.-S. Chen, Tracking airborne targets hidden in blind Doppler using current statistical model particle filter. Prog. Electromagn. Res. 82, 227–240 (2008)

    Article  Google Scholar 

  24. W. Zang, Z.-G. Shi, S.-C. Du, K.-S. Chen, Novel roughening method for reentry vehicle tracking using particle filter. J. Electromagn. Wave 21(14), 1969–1981 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Guo Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SH., Shi, ZG., Chen, JM. et al. A Low-Power Memory-Efficient Resampling Architecture for Particle Filters. Circuits Syst Signal Process 29, 155–167 (2010). https://doi.org/10.1007/s00034-009-9117-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-009-9117-4

Keywords

Navigation