Abstract
We present a short and purely combinatorial proof of Linnik’s theorem: for any \(\varepsilon >0\) there exists a constant \(C_\varepsilon \) such that for any N, there are at most \(C_\varepsilon \) primes \(p\le N\) such that the least positive quadratic non-residue modulo p exceeds \(N^\varepsilon \).
Similar content being viewed by others
References
Balister, P., Bollobás, B., Lee, J.D., Morris, R., Riordan, O.: A note on Linnik’s theorem on quadratic non-residues, arXiv:1712.07179
Bombieri, E.: On the large sieve. Mathematika 12, 201–225 (1965)
Cojocaru, A.C., Murty, M.R.: An Introduction to Sieve Methods and Their Applications, London Mathematical Society Student Texts, vol. 66. Cambridge University Press, Cambridge (2006)
Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Mat. Astron. Fys. 22, 1–14 (1930)
Friedlander, J.B., Iwaniec, H.: Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57. American Mathematical Society, Providence, RI (2010)
Goldfeld, D.: The elementary proof of the prime number theorem: an historical perspective. In: Chudnovsky, D., Chudnovsky, G., Nathanson, M. (eds.) Number Theory, pp. 179–192. Springer, New York (2004)
Linnik, U.V.: The large sieve. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 292–294 (1941)
Linnik, U.V.: A remark on the least quadratic non-residue. C. R. (Doklady) Acad. Sci. URSS (N.S.) 36, 119–120 (1942)
Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie. J. Reine Angew. Math. 78, 46–62 (1874)
Rényi, A.: On the representation of an even number as the sum of a single prime and a single almost-prime number. Dokl. Akad. Nauk SSSR (N.S.) 56, 455–458 (1947)
Rényi, A.: Un nouveau théorème concernant les fonctions indépendantes et ses applications à la théorie des nombres. J. Math. Pures Appl. 28, 137–149 (1949)
Rényi, A.: On the large sieve of Ju.V. Linnik. Compos. Math. 8, 68–75 (1951)
Rényi, A.: New version of the probabilistic generalization of the large sieve. Acta Math. Acad. Sci. Hung. 10, 217–226 (1959)
Roth, K.F.: On the large sieves of Linnik and Rényi. Mathematika 12, 1–9 (1965)
Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory (3rd edn), Graduate Studies in Mathematics, vol. 163. American Mathematical Society, Providence (2015)
Acknowledgements
The work of the first two authors was partially supported by NSF Grant DMS 1600742, and work of the second author was also partially supported by MULTIPLEX Grant 317532. The work of the fourth author was partially supported by CNPq (Proc. 303275/2013-8) and FAPERJ (Proc. 201.598/2014). The research in this paper was carried out while the third, fourth and fifth authors were visiting the University of Memphis.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Balister, P., Bollobás, B., Lee, J.D. et al. A note on Linnik’s theorem on quadratic non-residues. Arch. Math. 112, 371–375 (2019). https://doi.org/10.1007/s00013-018-1281-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00013-018-1281-y