Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Topological and metric properties of spaces of generalized persistence diagrams

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

Motivated by persistent homology and topological data analysis, we consider formal sums on a metric space with a distinguished subset. These formal sums, which we call persistence diagrams, have a canonical 1-parameter family of metrics called Wasserstein distances. We study the topological and metric properties of these spaces. Some of our results are new even in the case of persistence diagrams on the half-plane. Under mild conditions, no persistence diagram has a compact neighborhood. If the underlying metric space is \(\sigma \)-compact then so is the space of persistence diagrams. However, under mild conditions, the space of persistence diagrams is not hemicompact and the space of functions from this space to a topological space is not metrizable. Spaces of persistence diagrams inherit completeness and separability from the underlying metric space. Some spaces of persistence diagrams inherit being path connected, being a length space, and being a geodesic space, but others do not. We give criteria for a set of persistence diagrams to be totally bounded and relatively compact. We also study the curvature and dimension of spaces of persistence diagrams and their embeddability into a Hilbert space. As an important technical step, which is of independent interest, we give necessary and sufficient conditions for the existence of optimal matchings of persistence diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bell, G., Dranishnikov, A.: Asymptotic dimension. Topol. Appl. 155(12), 1265–1296 (2008)

    Article  MathSciNet  Google Scholar 

  • Billingsley, P.: Convergence of probability measures. In: Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  • Bjerkevik, H.B.: On the stability of interval decomposable persistence modules. Discret. Comput. Geom. 66(1), 92–121 (2021)

    Article  MathSciNet  Google Scholar 

  • Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)

    Article  MathSciNet  Google Scholar 

  • Botnan, M., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebr. Geom. Topol. 18(6), 3133–3204 (2018)

    Article  MathSciNet  Google Scholar 

  • Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

    Google Scholar 

  • Bubenik, P., Elchesen, A.: Universality of persistence diagrams and the bottleneck and Wasserstein distances. Comput. Geom. 105–106, 101882 (2022a)

    Article  MathSciNet  Google Scholar 

  • Bubenik, P., Elchesen, A.: Virtual persistence diagrams, signed measures, Wasserstein distances, and Banach spaces. J. Appl. Comput. Topol. 6(4), 429–474 (2022b)

    Article  MathSciNet  Google Scholar 

  • Bubenik, P., Vergili, T.: Topological spaces of persistence modules and their properties. J. Appl. Comput. Topol. 2(3), 233–269 (2018)

    Article  MathSciNet  Google Scholar 

  • Bubenik, P., Wagner, A.: Embeddings of persistence diagrams into Hilbert spaces. J. Appl. Comput. Topol. 4(3), 339–351 (2020)

    Article  MathSciNet  Google Scholar 

  • Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Soc, Providence (2001)

    Google Scholar 

  • Burago, Yu., Gromov, M., Perel’man, G., Aleksandrov, A.D.: Spaces with curvatures bounded below. Uspekhi Mat. Nauk 47(2(284)), 3–51, 222 (1992)

    MathSciNet  Google Scholar 

  • Carlsson, G., Vejdemo-Johansson, M.: Topological Data Analysis with Applications. Cambridge University Press, Cambridge (2022)

    Google Scholar 

  • Che, M., Galaz-García, F., Guijarro, L., Solis, I.M.: Metric geometry of spaces of persistence diagrams (2021). arXiv:2109.14697v2

  • Chowdhury, S.: Geodesics in persistence diagram space (2019). arXiv:1905.10820

  • Cochoy, J., Oudot, S.: Decomposition of exact pfd persistence bimodules. Discret. Comput. Geom. 63(2), 255–293 (2020)

    Article  MathSciNet  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(L_p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  Google Scholar 

  • Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.J.: A barcode shape descriptor for curve point cloud data. Comput. Graph. 28(6), 881–894 (2004)

    Article  Google Scholar 

  • Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge, UK (2022)

    Book  Google Scholar 

  • Kasprowski, D.: The asymptotic dimension of quotients by finite groups. Proc. Am. Math. Soc. 145(6), 2383–2389 (2017)

    Article  MathSciNet  Google Scholar 

  • Kim, W., Mémoli, F.: Generalized persistence diagrams for persistence modules over posets. J. Appl. Comput. Topol. 5(4), 533–581 (2021)

    Article  MathSciNet  Google Scholar 

  • Kim, W., Memoli, F.: Persistence over posets. Not. Am. Math. Soc. (2023). https://doi.org/10.1090/noti2761

    Article  Google Scholar 

  • Kuchaiev, O., Protasov, I.: Coarse rays. Ukr. Mat. Visn. 5(2), 185–192 (2008)

    MathSciNet  Google Scholar 

  • McCoy, R.A.: Countability properties of function spaces. Rocky Mt. J. Math. 10(4), 717–730 (1980)

    Article  MathSciNet  Google Scholar 

  • Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Probl. 27(12), 124007 (2011)

    Article  MathSciNet  Google Scholar 

  • Mitra, A., Virk, Ž: The space of persistence diagrams on \(n\) points coarsely embeds into Hilbert space. Proc. Am. Math. Soc. 149(6), 2693–2703 (2021)

    Article  MathSciNet  Google Scholar 

  • Munkres, J.: Topology. In: Featured Titles for Topology. Prentice Hall, Incorporated, Hoboken (2000)

    Google Scholar 

  • Ohta, S.-I.: Barycenters in alexandrov spaces of curvature bounded below. Adv. Geom. 12(4), 571–587 (2012)

    MathSciNet  Google Scholar 

  • Perea, J.A., Munch, E., Khasawneh, F.A.: Approximating continuous functions on persistence diagrams using template functions. Found. Comput. Math. 23(4), 1215–1272 (2022)

    Article  MathSciNet  Google Scholar 

  • Rabadan, R., Blumberg, A.J.: Topological Data Analysis for Genomics and Evolution: Topology in Biology. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  • Roe, J.: Lectures on Coarse Geometry. University Lecture Series, vol. 31. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  • Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2001)

    Book  Google Scholar 

  • Skryzalin, J., Carlsson, G.: Numeric invariants from multidimensional persistence. J. Appl. Comput. Topol. 1(1), 89–119 (2017)

    Article  MathSciNet  Google Scholar 

  • Steinwart, I., Christmann, A.: Support vector machines. In: Information Science and Statistics. Springer, New York (2008)

    Google Scholar 

  • Turner, K.: Medians of populations of persistence diagrams. Homol. Homotopy Appl. 22(1), 255–282 (2020)

    Article  MathSciNet  Google Scholar 

  • Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discret. Comput. Geom. 52(1), 44–70 (2014)

    Article  Google Scholar 

  • Wagner, A.: Nonembeddability of persistence diagrams with \(p>2\) Wasserstein metric. Proc. Am. Math. Soc. 149(6), 2673–2677 (2021)

    Article  MathSciNet  Google Scholar 

  • Willard, S.: General topology. In: Addison–Wesley Series in Mathematics. Dover Publications, Mineola (2004)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Southeast Center for Mathematics and Biology, an NSF-Simons Research Center for Mathematics of Complex Biological Systems, under National Science Foundation Grant No. DMS- 1764406 and Simons Foundation Grant No. 594594. This material is based upon work supported by, or in part by, the Army Research Laboratory and the Army Research Office under contract/grant number W911NF-18-1-0307. The authors would like to thank Alex Elchesen and Alexander Dranishnikov for helpful discussions and comments. The authors would like to thank the referees whose careful reading led to many improvements in our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bubenik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubenik, P., Hartsock, I. Topological and metric properties of spaces of generalized persistence diagrams. J Appl. and Comput. Topology 8, 347–399 (2024). https://doi.org/10.1007/s41468-023-00157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-023-00157-2

Keywords

Mathematics Subject Classification

Navigation