Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ant clustering with locally weighted ant perception and diversified memory

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Ant clustering algorithms are a robust and flexible tool for clustering data that have produced some promising results. This paper introduces two improvements that can be incorporated into any ant clustering algorithm: kernel function similarity weights and a similarity memory model replacement scheme. A kernel function weights objects within an ant’s neighborhood according to the object distance and provides an alternate interpretation of the similarity of objects in an ant’s neighborhood. Ants can hill-climb the kernel gradients as they look for a suitable place to drop a carried object. The similarity memory model equips ants with a small memory consisting of a sampling of the current clustering space. We test several kernel functions and memory replacement schemes on the Iris, Wisconsin Breast Cancer, and Lincoln Lab network intrusion datasets. Compared to a basic ant clustering algorithm, we show that kernel functions and the similarity memory model increase clustering speed and cluster quality, especially for datasets with an unbalanced class distribution, such as network intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence Review, 11, 11–73.

    Article  Google Scholar 

  • Cheeseman, P., & Stutz, J. (1996). Bayesian classification (autoclass): theory and results. In Advances in knowledge discovery and data mining (pp. 153–180). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Chen, L., Liue, Y., Fattah, C., & Yan, G. (2004). HDACC: A heuristic density-based ant colony clustering algorithm. In IEEE/WIC/ACM international conference on intelligent agent technology (IAT 2004) (pp. 397–400). Los Alamitos, CA: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Cucchiara, R. (1993). Analysis and comparison of different genetic models for the clustering problem in image analysis. In International conference on artificial neural networks and genetic algorithms (pp. 423–427). Berlin: Springer.

    Google Scholar 

  • Dasgupta, D., & Gonzales, F. (2002). An immunity-based technique to characterize intrusions in computer networks. IEEE Transactions on Evolutionary Computation, 6, 179–188.

    Google Scholar 

  • Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1990). The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of the first international conference on simulation of adaptive behavior: from animals to animats (pp. 356–363). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Ekola, T., Laurikkala, M., Lehto, T., & Koivisto, H. (2004). Network traffic analysis using clustering ants. In Proceedings of the 17th world automation congress (pp. 275–280). Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 7(II), 179–188.

    Google Scholar 

  • Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2(2), 139–172.

    Google Scholar 

  • Gennari, J. H., Langley, P., & Fisher, D. (1990). Models of incremental concept formation. Artificial Intelligence, 40, 11–61.

    Article  Google Scholar 

  • Haines, J., Lippmann, R., Fried, D., Tran, E., Boswell, S., & Zissman, M. (1999). DARPA intrusion detection system evaluation: Design and procedures (Technical report). MIT Lincoln Laboratory Technical Report.

  • Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. In Advances in neural information processing systems (pp. 281–288). Cambridge, MA: MIT Press.

    Google Scholar 

  • Handl, J. (2003). Ant-based methods for tasks of clustering and topographic mapping: Extensions, analysis and comparison with alternative methods (Master’s thesis). Germany: Universität Erlangen-Nürnberg. URL http://www.handl.julia.de.

  • Handl, J., & Meyer, B. (2007). Ant-based and swarm-based clustering. Swarm Intelligence, 1(2), 95–113.

    Article  Google Scholar 

  • Handl, J., Knowles, J., & Dorigo, M. (2003a). Ant-based clustering: a comparative study of its relative performance with respect to k-means, average link, and 1d-som (Technical report TR/IRIDIA/2003-24). Université Libre de Bruxelles.

  • Handl, J., Knowles, J., & Dorigo, M. (2003b). On the performance of ant-based clustering. In Frontiers in artificial intelligence and applications : Vol. 104. Design and application of hybrid intelligent systems (pp. 204–213). Amsterdam: IOS Press.

    Google Scholar 

  • Handl, J., Knowles, K., & Kell, D. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15), 3201–3212.

    Article  Google Scholar 

  • Handl, J., Knowles, J., & Dorigo, M. (2006). Ant-based clustering and topographic mapping. Artificial Life, 12(1), 35–61.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  Google Scholar 

  • Jones, D. R., & Beltrano, M. A. (1991). Solving partitioning problems with genetic algorithms. In Fourth international conference on genetic algorithms (pp. 442–449). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Kanade, P. M., & Hall, L. O. (2004). Fuzzy ant clustering by centroid positioning. In Proceedings of the 2004 IEEE international conference on fuzzy systems (pp. 371–376). Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Luc̆ić, P. (2002). Modelling transportation systems using concepts of swarm intelligence and soft computing (Ph.D. thesis). Virginia Polytechnic Institute.

  • Lumer, E. B., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In Third international conference on simulation of adaptive behavior: From animals to animats (pp. 501–508). Cambridge, MA: MIT Press.

    Google Scholar 

  • MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley symposium on mathematical statistics and probability (pp. 281–297). Berkeley, CA: University of California Press.

    Google Scholar 

  • Mangasarian, O. L., & Wolberg, W. H. (1990). Cancer diagnosis via linear programming. SIAM News, 23(5), 1–18.

    Google Scholar 

  • Monmarché, N. (1999). On data clustering with artificial ants. In A. A. Freitas (Ed.), Data mining with evolutionary algorithms: Research directions—AAAI-99 and GECCO-99 workshop (pp. 23–26). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Montes de Oca, M. A., Garrido, L., & Aguirre, J. L. (2004). A first approach to study the effects of direct information exchange between agents in ant-based clustering. In S. Kumar, A. Abraham, J. Harnisch, & A. Satyadas (Eds.), Proceedings of the first world congress on lateral computing WCLC 2004. World Federation on Lateral-Computing, Bangalore, India.

  • Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.

  • Pelleg, D., & Moore, A. (1999). Accelerating exact k-means algorithms with geometric reasoning. In Fifth ACM SIGKDD international conference on knowledge discovery and data mining (KDD-99) (pp. 277–281). New York, NY: ACM.

    Chapter  Google Scholar 

  • Pomerlau, D. (1993). Knowledge-based training of artificial neural networks for autonomous robot driving. In J. H. Connel, & S. Mahadevan (Eds.), Robot Learning. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850.

    Article  Google Scholar 

  • Rose, K., Gurewitz, E., & Fox, G. C. (1990). Statistical mechanics and phase transitions in clustering. Physical Review Letters, 65(8), 945–948.

    Article  Google Scholar 

  • Sammon Jr., J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5), 401–409.

    Article  Google Scholar 

  • Schockaert, S., De Cock, M., Cornelis, C., & Kerre, E. E. (2004a). Efficient clustering with fuzzy ants. In Applied computational intelligence, proceedings of the 6th international FLINS conference (pp. 195–200). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Schockaert, S., De Cock, M., Cornelis, C., & Kerre, E. E. (2004b). Fuzzy ant based clustering. In LNCS : Vol. 3172. Ant colony optimization and swarm intelligence (pp. 342–349). Berlin: Springer.

    Google Scholar 

  • Vizine, A., de Castro, L., Hruschka, E., & Gudwin, R. (2005). Towards improving clustering ants: An adaptive ant clustering algorithm. Informatica, 29(2), 143–154.

    MATH  Google Scholar 

  • Yeung, K. Y., & Ruzzo, W. L. (2001). Details of the Adjusted Rand Index and clustering algorithms. Supplement to the paper “An empirical study on Principal Component Analysis for clustering gene expression data”. Bioinformatics, 9(17), 763–774.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert L. Peterson.

Additional information

The views expressed herein are those of the authors and do not reflect the official policy or position of the US Air Force, Dept. of Defense, or the US Government. The US Government may reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation here on. This paper was supported by the Air Force Office of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, G.L., Mayer, C.B. & Kubler, T.L. Ant clustering with locally weighted ant perception and diversified memory. Swarm Intell 2, 43–68 (2008). https://doi.org/10.1007/s11721-008-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-008-0011-7

Keywords

Navigation