Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Metamaterial band theory: fundamentals & applications

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Remarkable progress has been made over the past decade in controlling light propagation and absorption in compact devices using nanophotonic structures and metamaterials. From sensing and modulation, to on-chip communication and light trapping for solar cells, new device applications and opportunities motivate the need for a rigorous understanding of the modal properties of metamaterials over a broad range of frequencies. In this review, we provide an overview of a metamaterial band theory we have developed that rigorously models the behavior of metamaterials made of dispersive materials such as metals. The theory extends traditional photonic band theory for periodic dielectric structures by coupling the mechanical motion of electrons in the metal directly to Maxwell’s equations. The solution for the band structures of metamaterials is then reduced to a standard matrix eigenvalue problem that nevertheless fully takes into account the dispersive properties of the constituent materials. As an application of the metamaterial band theory, we show that one can develop a perturbation formalism based on this theory to physically explain and predict the effect of dielectric refractive index modulation or metallic plasma frequency variation in metamaterials. Furthermore, the metamaterial band theory also provides an intuitive physical picture of the source of modal material loss, as well as a rigorous upper bound on the modal material loss rate of any plasmonic, metamaterial structure. This in turn places fundamental limits on the broadband operation of such devices for applications such as photodetection and absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X D, Grzegorczyk T M, Wu B I, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E, 2004, 70: 016608

    Article  Google Scholar 

  2. Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376–379

    Article  Google Scholar 

  3. Hur K, Francescato Y, Giannini V, et al. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew Chem Int Ed, 2011, 50: 11985–11989

    Article  Google Scholar 

  4. Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008

    Google Scholar 

  5. Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express, 2001, 8: 173–190

    Article  Google Scholar 

  6. Busch K, Mingaleev S F, Garcia-Martin A, et al. The wannier function approach to photonic crystal circuits. J Phys-Condens Matter, 2003, 15: R1233–R1256

    Article  Google Scholar 

  7. Jiao Y, Fan S H, Miller D A B. Systematic photonic crystal device design: global and local optimization and sensitivity analysis. IEEE J Quantum Electron, 2006, 42: 266–279

    Article  Google Scholar 

  8. Kuzmiak V, Maradudin A A, McGurn A R. Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal. Phys Rev B, 1997, 55: 4298–4311

    Article  Google Scholar 

  9. Kuzmiak V, Maradudin A A. Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation. Phys Rev B, 1997, 55: 7427–7444

    Article  Google Scholar 

  10. Kuzmiak V, Maradudin A A. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components. Phys Rev B, 1998, 58: 7230–7251

    Article  Google Scholar 

  11. Pendry J B. Calculating photonic band structure. J Phys-Condens Matter, 1996, 8: 1085–1108

    Article  Google Scholar 

  12. Sakoda K, Kawai N, Ito T, et al. Photonic bands of metallic systems. i. principle of calculation and accuracy. Phys Rev B, 2001, 64: 045116

    Google Scholar 

  13. Huang K C, Bienstman P, Joannopoulos J D, et al. Field expulsion and reconfiguration in polaritonic photonic crystals. Phys Rev Lett, 2003, 90: 196402

    Article  Google Scholar 

  14. Ito T, Sakoda K. Photonic bands of metallic systems. 5. features of surface plasmon polaritons. Phys Rev B, 2001, 64: 045117

    Article  Google Scholar 

  15. Toader O, John S. Photonic band gap enhancement in frequency-dependent dielectrics. Phys Rev E, 2004, 70: 046605

    Article  Google Scholar 

  16. Moreno E, Erni D, Hafner C. Band structure computations of metallic photonic crystals with the multiple multipole method. Phys Rev B, 2002, 65: 155120

    Article  Google Scholar 

  17. McPhedran R C, Botten L C, McOrist J, et al. Density of states functions for photonic crystals. Phys Rev E, 2004, 69: 016609

    Article  Google Scholar 

  18. Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 2003, 377: 528–539

    Article  Google Scholar 

  19. Homola J, ed. Surface Plasmon Resonance Based Sensors. Berlin: Springer, 2006

    Google Scholar 

  20. Kabashin A, Evans P, Pastkovsky S. Plasmonic nanorod metamaterials for biosensing. Nat Mat, 2009, 8: 867–871

    Article  Google Scholar 

  21. Rosenberg J, Shenoi R V, Vandervelde T E, et al. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl Phys Lett, 2010, 95: 161101

    Article  Google Scholar 

  22. Alleyne C, Kirk A, McPhedran R. Enhanced spr sensitivity using periodic metallic structures. Opt Express, 2007, 15: 8163–8169

    Article  Google Scholar 

  23. Dionne J A, Diest K, Sweatlock L A, et al. Plasmostor: a metal-Oxide-Si field effect plasmonic modulator. Nano Lett, 2009, 9: 897–902

    Article  Google Scholar 

  24. Cai W S, White J S, Brongersma M L. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett, 2009, 9: 4403–4411

    Article  Google Scholar 

  25. Fan S H. Nanophotonics: magnet-controlled plasmons. Nat Photon, 2010, 4: 76–77

    Article  Google Scholar 

  26. Pala R A, Shimizu K T, Melosh N A, et al. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett, 2008, 8: 1506–1510

    Article  Google Scholar 

  27. Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of cdse quantum dots. Nat Photon, 2007, 1: 402–406

    Article  Google Scholar 

  28. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311: 189–193

    Article  Google Scholar 

  29. Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nat Mat, 2010, 9: 205–213

    Article  Google Scholar 

  30. Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials. Science, 2011, 331: 290–291

    Article  Google Scholar 

  31. Sorger V J, Oulton R F, Yao J, et al. Plasmonic fabry-pérot nanocavity. Nano Lett, 2009, 9: 3489–3493

    Article  Google Scholar 

  32. Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913–3961

    Article  Google Scholar 

  33. Ruan Z C, Yan M, Neff C W, et al. Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys Rev Lett, 2007, 99: 113903

    Article  Google Scholar 

  34. Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett, 2007, 98: 266802

    Article  Google Scholar 

  35. Brongersma M L. Plasmonics: engineering optical nanoantennas. Nat Photon, 2008, 2: 270–272

    Article  Google Scholar 

  36. Veronis G, Dutton R W, Fan S H. Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range. J Appl Phys, 2005, 97: 093104

    Article  Google Scholar 

  37. Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun, 2011, 2: 517

    Article  Google Scholar 

  38. Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas. Science, 2011, 332: 702–704

    Article  Google Scholar 

  39. Raman A, Fan S H. Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem. Phys Rev Lett, 2010, 104: 087401

    Article  Google Scholar 

  40. Raman A, Fan S H. Perturbation theory for plasmonic modulation and sensing. Phys Rev B, 2011, 83: 205131

    Article  Google Scholar 

  41. Raman A, Shin W, Fan S H. Upper bound on the modal material loss rate in plasmonic and metamaterial systems. Phys Rev Lett, 2013, 110: 183901

    Article  Google Scholar 

  42. Drachev V P, Chettiar U K, Kildishev A V, et al. The ag dielectric function in plasmonic metamaterials. Opt Express, 2008, 16: 1186–1195

    Article  Google Scholar 

  43. Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain Method. 3rd ed. Artech House Publishers, 2005

    Google Scholar 

  44. Joseph R M, Hagness S C, Taflove A. Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt Lett, 1991, 16: 1412–1414

    Article  Google Scholar 

  45. Bhat N A R, Sipe J E. Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media. Phys Rev A, 2006, 73: 063808

    Article  Google Scholar 

  46. Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag, 1966, 14: 302–307

    MATH  Google Scholar 

  47. Chen Y C, Sun K Q, Beker B, et al. Unified matrix presentation of Maxwell’s and wave equations using generalized differential matrix operators [em engineering education]. IEEE Trans Educ, 1998, 41: 61–69

    Article  Google Scholar 

  48. Lehoucq R B, Sorensen D C, Yang C. Arpack Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Society for Industrial & Applied, 1997

    Google Scholar 

  49. Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379

    Article  Google Scholar 

  50. Fan S H, Villeneuve P R, Joannopoulos J D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys Rev B, 1996, 54: 11245–11251

    Article  Google Scholar 

  51. Huang K C, Bienstman P, Joannopoulos J D, et al. Field expulsion and reconfiguration in polaritonic photonic crystals. Phys Rev Lett, 2003, 90: 196402

    Article  Google Scholar 

  52. Chow E, Grot A, Mirkarimi L W, et al. Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity. Opt Lett, 2004, 29: 1093–1095

    Article  Google Scholar 

  53. Mortensen N, Xiao S, Pedersen J. Liquid-infiltrated photonic crystals—enhanced light-matter interactions for lab-on-a-chip applications. Microfluid Nanofluid, 2008, 4: 117

    Article  Google Scholar 

  54. White I, Fan X. On the performance quantification of resonant refractive index sensors. Opt Express, 2008, 16: 1020–1028

    Article  Google Scholar 

  55. Robinson J, Chen L, Lipson M. On-chip gas detection in silicon optical microcavities. Opt Express, 2008, 16: 4296–4301

    Article  Google Scholar 

  56. Dell’Olio F, Passaro V. Optical sensing by optimized silicon slot waveguides. Opt Express, 2007, 15: 4977–4993

    Article  Google Scholar 

  57. Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008

    Google Scholar 

  58. Shao L H, Ruther M, Linden S, et al. Electromodulation of photonic metamaterials. In: Photonic Metamaterials and Plasmonics. Optical Society of America, 2010. MMC2

    Google Scholar 

  59. Diest K. Active metal-insulator-metal plasmonic devices. Dissertation of Doctoral Degree. California: California Institute of Technology, 2010

    Google Scholar 

  60. Guler U, Turan R. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express, 2010, 18: 17322–17338

    Article  Google Scholar 

  61. Loudon R. The propagation of electromagnetic energy through an absorbing dielectric. J Physics A-Gen Phys, 1970, 3: 233–245

    Article  Google Scholar 

  62. Ruppin R. Electromagnetic energy density in a dispersive and absorptive material. Phys Lett A, 2002, 299: 309–312

    Article  Google Scholar 

  63. Zhang S, Fan W J, Malloy K J, et al. Near-infrared double negative metamaterials. Opt Express, 2005, 13: 4922–4930

    Article  Google Scholar 

  64. Dolling G, Wegener M, Soukoulis C M, et al. Design-related losses of double-fishnet negative-index photonic metamaterials. Opt Express, 2007, 15: 11536–11541

    Article  Google Scholar 

  65. Oulton R F, Bartal G, Pile D F P, et al. Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys, 2008, 10: 105018

    Article  Google Scholar 

  66. Khurgin J B, Sun G. In search of the elusive lossless metal. Appl Phys Lett, 2010, 96: 181102

    Article  Google Scholar 

  67. Ferry V E, Munday J N, Atwater H A. Design considerations for plasmonic photovoltaics. Adv Mat, 2010, 22: 4794–4808

    Article  Google Scholar 

  68. Shin W, Fan S H. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J Comput Phys, 2012, 231: 3406–3431

    Article  MathSciNet  MATH  Google Scholar 

  69. Schiff E A. Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals. J Appl Phys, 2012, 110: 104501

    Article  Google Scholar 

  70. Wang F, Shen Y R. General properties of local plasmons in metal nanostructures. Phys Rev Lett, 2006, 97: 206806

    Article  Google Scholar 

  71. Khurgin J B, Sun G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl Phys Lett, 2011, 99: 211106

    Article  Google Scholar 

  72. Bethe H A, Salpeter E E. Quantum Mechanics of One- and Two-Electron Atoms. Berlin: Springer-Verlag, 1957

    Book  MATH  Google Scholar 

  73. Zeng Y, Dalvit D A R, O’Hara J, et al. Modal analysis method to describe weak nonlinear effects in metamaterials. Phys Rev B, 2012, 85: 125107

    Article  Google Scholar 

  74. Xi B, Xu H, Xiao S Y, et al. Theory of coupling in dispersive photonic systems. Phys Rev B, 2011, 83: 165115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShanHui Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, A.P., Shin, W. & Fan, S. Metamaterial band theory: fundamentals & applications. Sci. China Inf. Sci. 56, 1–14 (2013). https://doi.org/10.1007/s11432-013-5039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5039-7

Keywords

Navigation