Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Simulative Analysis and Performance Evaluation for Data Variety Aware Power Optimization Technique Using Big Data

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As advancements in technology domain have promoted with times, so have the amount of data generated. The amount of this data is so volumetric, that mainstream techniques fail to process and analyse the data in an efficient way and hence the requirement of dedicated processing techniques. This gigantic amount and processing of this sort of data often leads to over exploitation of computing resources. This results in a lot of power consumption. Many attempts have been made in this domain at hardware as well as software level and promising results have been achieved, but one issue that has been over looked is the impact of Big Data’s Variety on processing. To address this problem it contributes towards a novel technique which reduces energy consumption on processing of big-data with variety meeting the deadline as Quality of Service. The technique works by reading the whole dataset in chunks and then removing stop words with appropriate algorithm to save processing time. In the evaluation part, a set of datasets of approximately 100 GB aggregated from different sources and evaluated them using benchmark applications. The final outcomes with efficient approach by improving energy consumption and meeting deadline constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Amazon Datasets—https://nijianmo.github.io/amazon/index.html Guttenberg Data—https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html Quotes Dataset – https://www.kaggle.com/akmittal/quotes-dataset TPC dataset—https://relational.fit.cvut.cz/dataset/TPCH IMDB dataset—https://datasets.imdbws.com/

References

  1. Ahmadvand, H., Foroutan, F., & Fathy, M. (2021). DV-DVFS: Merging data variety and DVFS technique to manage the energy consumption of big data processing. Journal of Big Data, 8, 45. https://doi.org/10.1186/s40537-021-00437-7

    Article  Google Scholar 

  2. Nejat, M., Manivannam, M., & Perices, M. (2020). Perstenstrom, “Coordinated management of DVFS and cache partitioning under QoS contraints to save energy in multi-core systems.” Journal of Parallel Computing, 144, 246–259.

    Google Scholar 

  3. Hassan, H. A., Salem, S. A., & Saad, E. M. (2020). ”A smart energy and reliability aware scheduling algorithm for workflow execution in DVFS-enabled cloud environment. Future Generation Computer Systems, 112, 431–448.

    Article  Google Scholar 

  4. Ahmadvand, H., Goudarzi, M., & Foroutan, F. (2019). Gapprox: Using Gallup approach for approximation in big data processing. J Big Data, 6, 20. https://doi.org/10.1186/s40537-019-0185-4

    Article  Google Scholar 

  5. Stavarindes, G. L., & Karatza, H. D. (2019). An energy-efficient, Qos aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations. Future Generation Computer Systems, 96, 216–226.

    Article  Google Scholar 

  6. Zhu, Z., & Tang, X. (2019). Deadline constrained workflow scheduling in IaaS cloud with multi-resource packing. Future Generation Computer Systems, 101, 880–893.

    Article  Google Scholar 

  7. Guerreuro, J., Ilic, A., Roma, N., & Tomas, P. (2018). DVFS-aware application classification to improve GPGPUs energy efficiency. Parallel Computing, 000, 1–25.

    Google Scholar 

  8. Safari, M., & Khorsand, R. (2018). Energy aware scheduling algorithm for time constrained workflow tasks in DVFS-enabled cloud environment. Simulation Modelling Practice and Theory, 87, 311–326.

    Article  Google Scholar 

  9. Rauber, T., & Rünger, G. (2019). A scheduling selection process for energy-efficient task execution on DVFS processors. Concurrency Computat Pract Exper., 31, e5043. https://doi.org/10.1002/cpe.5043

    Article  Google Scholar 

  10. Shuting, Xu., Wu, C. Q., Hou, A., Wang, Y., & Wang, M. (2017). “Energy efficient dynamic consolidation of virtual machines in big data centres”, GPC 2017. LNCS, 10232, 191–206.

    Google Scholar 

  11. Teng, L., Pande, P. P., & Shirazi, B. (2016). A dynamic, compiler guided DVFS mechanism to achieve energy-efficiency in multi-core processors. Sustainable Computing: Informatics and Systems, 12, 1–9.

    Google Scholar 

  12. Arroba, P., Moya, J. M., Ayala, J. L., & Buyya, R. (2016). Dynamic Voltage and frequency scaling-awre dynamic consolidation of virtual machines for energy efficient cloud data centres. Concurrency Computation Practice Experience, 29(10), e4067.

    Article  Google Scholar 

  13. Zheng, W., & Huang, S. (2015). An adaptive deadline constrained energy-efficient scheduling heuristic for workflows in clouds. Concurrency Computat.: Pract Exper, 27, 5590–5605. https://doi.org/10.1002/cpe.3592

    Article  Google Scholar 

  14. Guérout, T., Monteil, T., Da Costa, G., Calheiros, R. N., Buyya, R., & Alexandru, M. (2013). Energy-aware simulation with DVFS. Simulation Modelling Practice and Theory, 39, 76–79.

    Article  Google Scholar 

  15. Rizvandi, N. B., Taheri, J., & Zomaya, A. (2011). Some observations on optimal frequency selection in DVFS–based energy consumption minimization. Journal of Parallel and Distributed Computing, 71(8), 1154–1164.

    Article  Google Scholar 

  16. Li, B., Yang, X., Zhou, R., Wang, B., Liu, C., & Zhang, Y. (2018). An efficient method for high quality and cohesive topical phrase mining. IEEE Transactions on Knowledge and Data Engineering., 31, 1–1. https://doi.org/10.1109/TKDE.2018.2823758

    Article  Google Scholar 

  17. Dash, S., Shakyawar, S. K., Sharma, M., et al. (2019). Big data in healthcare: Management, analysis and future prospects. J Big Data, 6, 54. https://doi.org/10.1186/s40537-019-0217-0

    Article  Google Scholar 

  18. Singh, J., Chen, J., Singh, S. P., Singh, M. P., Hassan, M. M., Hassan, M. M., & Awal, H. (2023). Load-balancing strategy: employing a capsule algorithm for cutting down energy consumption in cloud data centers for next generation wireless systems. Computational Intelligence and Neuroscience, 2023, 6090282. https://doi.org/10.1155/2023/6090282

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ardagna, D., Cappiello, C., Samá, W., & Vitali, M. (2018). Context-aware data quality assessment for big data. Future Generation Computer Systems, 89, 548–562. https://doi.org/10.1016/j.future.2018.07.014

    Article  Google Scholar 

  20. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S. U., & Li, K. (2016). An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. Journal of Grid Computing, 14(1), 55–74. https://doi.org/10.1007/s10723-015-9334-y

    Article  Google Scholar 

  21. Ibrahim, S., Phan, T. D., Carpen-Amarie, A., Chihoub, H. E., Moise, D., & Antoniu, G. (2016). Governing energy consumption in Hadoop through CPU frequency scaling: An analysis. Future Generation Computer Systems, 54, 219–232. https://doi.org/10.1016/j.future.2015.01.005

    Article  Google Scholar 

  22. Hosseini Shirvani, M., Rahmani, A. M., & Sahafi, A. (2020). A survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter: Taxonomy and challenges. In Journal of King Saud University - Computer and Information Sciences (Vol. 32, Issue 3, pp. 267–286). King Saud bin Abdulaziz University. https://doi.org/10.1016/j.jksuci.2018.07.001

  23. He, H., Zhao, Y., & Pang, S. (2020). Stochastic modeling and performance analysis of energy-aware cloud data center based on dynamic scalable stochastic petri net. Computing and Informatics, 39, 28–50. https://doi.org/10.31577/cai

    Article  MathSciNet  Google Scholar 

  24. Liu, B., Bohnenstiehl, B., & Baas, B. M. (n.d.). Scalable Hardware-Based Power Management for Many-Core Systems.

  25. Khriji, S., Chéour, R., & Kanoun, O. (2022). Dynamic voltage and frequency scaling and duty-cycling for ultra low-power wireless sensor nodes. Electronics (Switzerland). https://doi.org/10.3390/electronics11244071

    Article  Google Scholar 

  26. Junaid, M., Ali, S., Siddiqui, I. F., et al. (2022). Performance evaluation of data-driven intelligent algorithms for big data ecosystem. Wireless Personal Communications, 126, 2403–2423. https://doi.org/10.1007/s11277-021-09362-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Siddiqui, I. F., Qureshi, N. M., Chowdhry, B. S., & Uqaili, M. A. (2019). Edge-node-aware adaptive data processing framework for smart grid. Wireless Personal Communications, 106, 179–189.

    Article  Google Scholar 

  28. Lee, I., & Mangalaraj, G. (2022). Big data analytics in supply chain management: a systematic literature review and research directions. Big Data Cogn. Comput., 6, 17. https://doi.org/10.3390/bdcc6010017

    Article  Google Scholar 

  29. Pop, F., Iacono, M., Gribaudo, M., & Kołodziej, J. (2016). Advances in modelling and simulation for big-data applications (AMSBA). Concurrency Computat.: Pract Exper., 28, 291–293. https://doi.org/10.1002/cpe.3750

    Article  Google Scholar 

  30. Qureshi, N. M. F., Siddiqui, I. F., Abbas, A., Bashir, A. K., Nam, C. S., Chowdhry, B. S., & Uqaili, M. A. (2021). Stream-based authentication strategy using iot sensor data in multi-homing sub-aqueous big data network. Wireless Personal Communications, 116(2), 1217–1229. https://doi.org/10.1007/s11277-020-07215-3

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure b
figure c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R. Simulative Analysis and Performance Evaluation for Data Variety Aware Power Optimization Technique Using Big Data. Wireless Pers Commun 133, 1987–2002 (2023). https://doi.org/10.1007/s11277-023-10841-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10841-2

Keywords

Navigation