Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-Hop Cooperative Communication Technique for Cognitive DF and AF Relay Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we analyze the performance of cognitive multi-hop networks employing the two most common cooperation protocols, decode-and-forward (DF) and amplify-and-forward (AF). In order to provide the primary quality of service, strict limits on the transmit powers of the secondary nodes are imposed. Considering transmissions over independent but not necessarily identically distributed (i.n.i.d.) Rayleigh fading channels, an exact closed-form expression for the outage probability (OP) of the secondary transmission is derived for cognitive DF relay networks under the constraint of satisfying a required OP of the primary transmission. In addition, for the cognitive AF relay networks, a lower bound for the OP and an upper bound for the symbol error probability of the secondary transmission under considering constraint on the received-interference at the primary destination is obtained. For additional insights, the diversity order for both cases is also provided .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldsmith, I. M. A., Jafar, S., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97, 894–914.

    Article  Google Scholar 

  2. Laneman, J., Tse, D., & Wornell, G. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  3. Soleimani-Nasab, E., Ardebilipour, M., Kalantari, A., & Mahboobi, B. (2013). Performance analysis of multi-antenna relay networks with imperfect channel estimation. AEU-International Journal of Electronics and Communications, 67(1), 45–57.

    Article  Google Scholar 

  4. Hong, Y.-W. P., Huang, W.-J., & Kuo, C.-C. J. (2010). Cooperative communications and networking. New York: Springer.

    Book  Google Scholar 

  5. Ikki, S., & Aïssa, S. (2012). Multihop wireless relaying systems in the presence of cochannel interferences: Performance analysis and design optimization. IEEE Transactions on Vehicular Technology, 61(2), 566–573.

    Article  Google Scholar 

  6. Duong, T. Q., Bao, V. N. Q., & Zepernick, H. J. (2011). Exact outage probability of cognitive AF relaying with underlay spectrum sharing. Electronics Letters, 47(17), 1001–1002.

    Article  Google Scholar 

  7. Xia, M., & Aïssa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Performance analysis under average interference power constraints and Nakagami-\(m\) fading. IEEE Transactions on Communications, 60(6), 1523–1533.

    Article  Google Scholar 

  8. Duong, T. Q., Bao, V. N. Q., Alexandropoulos, G. C., & Zepernick, H. J. (2012). Effect of primary network on performance of spectrum sharing AF relaying. Electronics Letters, 48(1), 25–27.

    Article  Google Scholar 

  9. Duong, T. Q., & Bao, V. N. Q. (2012). Outage analysis of cognitive multihop networks under interference constraints. IEICE Transactions on Communications, E95–B(3), 1019–1022.

    Google Scholar 

  10. Tran, T.T., Bao, V.N.Q., Thanh, V.D., & Nguyen, T.D. (2012). Performance analysis of spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints. In Proceedings of International Conference on Communications and Electronics (ICEE).

  11. Zou, Y., Zhu, J., Zheng, B., & Yao, Y.-D. (2010). An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Transactions on Signal Processing, 58(10), 5438–5445.

    Article  MathSciNet  Google Scholar 

  12. Gradshteyn, I. S., & Ryzhik, M. (2007). In A. Jeffrey & D. Zwillinger (Eds.), Table of integrals, series, and products (7th ed.). San Diego, CA: Academic Press.

  13. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Najafi.

Appendices

Proof of Proposition 1

Notice that the RVs \(x = {\left| {{h_{\text{{PT}},\text{{PD}}}}} \right| ^2}\) and \(y = {\left| {{h_{\ell ,\text{{PD}}}}} \right| ^2}\) follow the exponential distribution with parameters \(\frac{1}{{\sigma _{\text{{PT}},\text{{PD}}}^2}}\) and \(\frac{1}{{\sigma _{\ell ,\text{{PD}}}^2}}\), respectively. Thus, by using the joint probability density function of RVs \(x\) and \(y\), and considering (1) we have

$$\begin{aligned} {P_{\text{{out}},\text{{pri}}}} = \mathop {\int {} }\limits _\text{{R}} \int {\frac{1}{{\sigma _{\text{{PT}},\text{{PD}}}^2\sigma _{\ell ,\text{{PD}}}^2}}{e^{ - \left( {\frac{x}{{\sigma _{\ell ,\ell + 1}^2}} + \frac{y}{{\sigma _{\text{{PT}},\ell + 1}^2}}} \right) }}} {} {} dx{} dy{} = 1 - \frac{{\exp \left( { - \frac{\varTheta }{{{\gamma _{\text{{PT}}}}\sigma _{\text{{PT}},\text{{PD}}}^2}}} \right) }}{{1 + \frac{{\varTheta {P_\ell }\sigma _{\ell ,\text{{PD}}}^2}}{{{P_{\text{{PT}}}}\sigma _{\text{{PT}},\text{{PD}}}^2}}}} \end{aligned}$$
(26)

where \(\text{{R}} = {\gamma _{\text{{PT}}}}x - {\gamma _\ell }y\varTheta < \varTheta \).

Proof of Proposition 4

In order to evaluate the SOP, we need to obtain the CDF of RV \(U = \frac{X}{{YZ}}\), where RVs \(X\), \(Y\), and \(Z\) follow the exponential distribution with parameters \(\frac{1}{{\sigma _X^2}}\), \(\frac{1}{{\sigma _Y^2}}\) and \(\frac{1}{{\sigma _Z^2}}\), respectively. The CDF of the RV \(U\) is obtained from [8] as

$$\begin{aligned} {F_U}\left( u \right) = 1 - \frac{{\sigma _X^2}}{{\sigma _Y^2\sigma _Z^2u}}\exp \left( {\frac{{\sigma _X^2}}{{\sigma _Y^2\sigma _Z^2u}}} \right) \varGamma \left( {0,\frac{{\sigma _X^2}}{{\sigma _Y^2\sigma _Z^2u}}} \right) , \end{aligned}$$
(27)

where \(\varGamma \left( {.,.} \right) \) is the incomplete Gamma function [12], Eq. (8.350.2)]. So, \(\Pr \left( {{\gamma _{\ell + 1}} < \gamma } \right) \) can be obtained from (27) by substituting \(X = \bar{\gamma } {\left| {{h_{\ell ,\ell + 1}}} \right| ^2}\), \(Y = {\left| {{h_{\text{{PT}},\ell + 1}}} \right| ^2}\) and \(Z = {{\bar{\gamma } }_I}{\left| {{h_{\ell ,\text{{PD}}}}} \right| ^2}\). Therefore, the CDF of the upper bounded SIR, \({\gamma _{A{F_{up}}}}\), is given by

$$\begin{aligned} {F_{\text{{A}}{\text{{F}}_{\text{{up}}}}}}\left( \gamma \right) = \Pr \left\{ {\min \left( {{\gamma _1},\ldots ,{\gamma _{L + 1}}} \right) < \gamma } \right\} = 1 - \prod \limits _{\ell = 0}^L {\Pr \left( {{\gamma _{\ell + 1}} > \gamma } \right) } = 1 - \prod \limits _{\ell = 0}^L {{x_\ell }{\text{{e}}^{{x_\ell }}}} \varGamma \left( {0,{x_\ell }} \right) . \end{aligned}$$
(28)

where \({x_\ell } = \frac{{\bar{\gamma }\sigma _{\ell ,\ell + 1}^2}}{{\sigma _{PT,\ell + 1}^2{{\bar{\gamma } }_I}\sigma _{\ell ,PD}^2\gamma }}\).

Hence, according to the preceding equation, the lower bound for the SOP can be given by

$$\begin{aligned} {P_{\text{{out}}}} = {F_{{\gamma _{\text{{AFup}}}}}}\left( {{\gamma _{\text{{th}}}}} \right) \end{aligned}$$
(29)

where \({\gamma _{\text{{th}}}}\) is an outage threshold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Ardebilipour, M., Soleimani-Nasab, E. et al. Multi-Hop Cooperative Communication Technique for Cognitive DF and AF Relay Networks. Wireless Pers Commun 83, 3209–3221 (2015). https://doi.org/10.1007/s11277-015-2590-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2590-0

Keywords

Navigation