Abstract
HARDI (High Angular Resolution Diffusion Imaging) is a recent magnetic resonance imaging (MRI) technique for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. In this article we study left-invariant diffusion on the group of 3D rigid body movements (i.e. 3D Euclidean motion group) SE(3) and its application to crossing-preserving smoothing of HARDI images. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on the space of positions and orientations in 3D embedded in SE(3) and can be solved by ℝ3 ⋊ S 2-convolution with the corresponding Green’s functions. We provide analytic approximation formulas and explicit sharp Gaussian estimates for these Green’s functions. In our design and analysis for appropriate (nonlinear) convection-diffusions on HARDI data we explain the underlying differential geometry on SE(3). We write our left-invariant diffusions in covariant derivatives on SE(3) using the Cartan connection. This Cartan connection has constant curvature and constant torsion, and so have the exponential curves which are the auto-parallels along which our left-invariant diffusion takes place. We provide experiments of our crossing-preserving Euclidean-invariant diffusions on artificial HARDI data containing crossing-fibers.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Alvarez, L., Guichard, F., Lions, P. L., & Morel, J.-M. (1993). Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis, 123, 200–257.
Arsigny, V., Pennec, X., & Ayache, N. (2006). Bi-invariant means in Lie groups. Application to Left-invariant Polyaffine Transformations. Technical report, Nr. 5885, INRIA, France.
Aubin, T. (2001) Graduate studies in mathematics : Vol. 27. A course in differential geometry. Providence: AMS
Barmpoutis, A., Vemuri, B. C., Howland, D., & Forder, J. R. (2008). Extracting tractosemas from a displacement probability field for tractography in DW-MRI. In Lecture notes in computer science : Vol. 5241. Proc. MICCAI 2008, Part I (pp. 9–16). Berlin: Springer.
Bukhvalov, A. V., & Arendt, W. (1994). Integral representation of resolvent and semigroups. Forum Mathematicum, 6(1), 111–137.
Burgeth, B., & Weickert, J. (2003). An explanation for the logarithmic connection between linear and morphological systems. In Lecture notes in computer science: Proc. 4th int. conference scale space 2003 (pp. 325–339). Berlin: Springer.
Burgeth, B., Breuss, M., Didas, S., & Weickert, J. (2008). PDE-based morphology for matrix fields: numerical solution schemes. Technical Report No. 220, Math. and Comp. Science, Saarland University, Saarbrücken.
Chirikjian, G. S., & Kyatkin, A. B. (2001). Engineering applications of noncommutitative harmonic analysis: with emphasis on rotation and motion groups. Boca Raton: CRC Press.
Citti, G., & Sarti, A. (2006). A cortical based model of perceptional completion in the roto-translation space. Journal of Mathematical Imaging and Vision, 24(3), 307–326.
Descoteaux, M., Angelino, E., Fitzgibbons, S., & Deriche, R. (2007). Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine, 58(3), 497–510.
Driscoll, J. R., & Healy, D. M. (1994). Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15(2), 202–250.
Duits, R., & Burgeth, B. (2007). Scale spaces on Lie groups. In M. Sgallari & Paragios (Eds.), Scale space and variational methods, (Ischia, Italy) (pp. 300–312). Berlin: Springer.
Duits, R., & Franken, E. M. (2009). Line enhancement and completion via left-invariant scale spaces on SE(2). In Lecture notes in computer science : Vol. 5567. Proceedings 2nd international conference on scale space and variational methods in computer vision (pp. 795–807). Berlin: Springer.
Duits, R., & Franken, E. M. (2009). Left-invariant diffusions on ℝ3 ⋊ S 2 and their application to crossing-preserving smoothing on HARDI images. CASA-report Department of Mathematics and Computer Science, Technische Universiteit Eindhoven. Nr. 18, May 2009. Available on the web http://www.win.tue.nl/casa/research/casareports/2009.html.
Duits, R., & Franken, E. M. (2010). Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion equations on SE(2), part II: Nonlinear left-invariant diffusion equations on invertible orientation scores. Quarterly on Applied Mathematics, 68(2), 255–331.
Duits, R., & van Almsick, M. (2008). The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d-euclidean motion group. Quarterly of Applied Mathematics, American Mathematical Society, 66, 27–67.
Duits, R., Florack, L. M. J., de Graaf, J., & ter Haar Romeny, B. M. (2004). On the axioms of scale space theory. Journal of Mathematical Imaging and Vision, 20, 267–298.
Duits, R., Felsberg, M., Granlund, G., & ter Haar Romeny, B. M. (2007). Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the euclidean motion group. International Journal of Computer Vision, 72(1), 79–102.
Duits, R., Führ, H., & Janssen, B. J. (2009). Left invariant evolutions on Gabor transforms. CASA-report Department of Mathematics and Computer Science, Technische Universiteit Eindhoven. Nr. 9, February 2009. Available on the web http://www.win.tue.nl/casa/research/casareports/2009.html.
Fletcher, T., & Joshi, S. (2007). Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing, 87(2), 250–262.
Florack, L. M. J. (2008). Codomain scale space and regularization for high angular resolution diffusion imaging. In S.A. Fernández, & R. de Luis Garcia (Eds.), Digital proceedings of CVPR workshop on tensors in image processing and computer vision, Anchorage, Alaska, USA, June 24–26, 2008. New York: IEEE.
Florack, L. M. J., & Balmachnova (2008). Decomposition of high angular resolution diffusion images into a sum of self-similar polynomials on the sphere. In Proceedings of the eighteenth international conference on computer graphics and vision, GraphiCon’2008 (pp. 26–31). Russian Federation, Moscow.
Franken, E. M. (2008). Enhancement of crossing elongated structures in images. PhD thesis, Eindhoven University of Technology, Department of Biomedical Engineering, The Netherlands.
Franken, E. M., & Duits, R. (2009). Crossing preserving coherence-enhancing diffusion on invertible orientation scores. International Journal of Computer Vision, 85(3), 253–278.
Gaveau, B. (1977). Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents. Acta Mathematica, 139, 96–153.
Gerschgorin, S. (1931). Über die Abgrenzung der Eigenwerte einer Matrix. Izvestia Akademii Nauk USSR. Otdelenie Fiz.-Mat. Nauk, 7, 749–754.
Gur, Y., & Sochen, N. (2005). Denoising tensors via Lie group flows. In Lecture notes in computer science : Vol. 3752. Variational, geometric, and level set methods in computer vision (pp. 195–208). Berlin: Springer.
Gur, Y., & Sochen, N. (2009). Regularizing flows over Lie groups. Journal of Mathematical Imaging and Vision, 33(2), 195–208.
Hess, C. P., Mukherjee, P., Tan, E. T., Xu, D., & Vigneron, D. B. (2006). Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magnetic Resonance in Medicine, 56, 104–117.
Hormander, L. (1968). Hypoelliptic second order differential equations. Acta Mathematica, 119, 147–171.
Iijima, T. (1962). Basic theory on normalization of a pattern (in case of typical one-dimensional pattern). Bulletin of Electrical Laboratory, 26, 368–388 (in Japanese).
Jost, J. (2005). Riemannian geometry and geometric analysis, 4th ed. Heidelberg: Springer.
Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.
Kunis, S., & Potts, D. (2003). Fast spherical Fourier algorithms. Journal of Computational and Applied Mathematics, 161(1), 75–98.
Mumford, D. (1994). Elastica and computer vision. In Algebraic geometry and its applications (pp. 491–506). Berlin: Springer.
Nagel, A., Ricci, F., & Stein, E.M. (1990). Fundamental solutions and harmonic analysis on nilpotent groups. Bulletin of American Mathematical Society, 23, 139–144.
Özarslan, E., & Mareci, T. H. (2003). Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging. Magnetic Resonance in Medicine, 50, 955–965.
Prčkovska, V., Rodrigues, P., Duits, R., ter Haar Romeny, B. M., & Vilanova, A. Extrapolating fiber crossings from DTI data. Can we gain the same information as HARDI? Technical CASA report nr. 20, 2010, Department of Mathematics and Computer Science, Eindhoven University of Technology, http://www.win.tue.nl/casa/research/casareports/2010.html.
Rodrigues, P., Duits, R., ter Haar Romeny, B. M., & Vilanova, A. Accelerated diffusion operators for enhancing DW-MRI. Technical CASA report, nr. 15, 2010, Department of Mathematics and Computer Science, Eindhoven University of Technology, http://www.win.tue.nl/casa/research/casareports/2010.html.
Spivak, M. (1975). Differential geometry (Vol. 2). Berkeley: Publish or Perish.
ter Elst, A. F. M., & Robinson, D. W. (1998). Weighted subcoercive operators on Lie groups. Journal of Functional Analysis, 157, 88–163.
Thornber, K. K., & Williams, L. R. (2000). Characterizing the distribution of complete shapes with corners using a mixture of random processes. Patern Recognition, 33, 543–553.
van Almsick, M. A. (2005). Context models of lines and contours. PhD thesis, Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands. ISBN:978-90-386-1117-4.
Weickert, J. A. (1999). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2/3), 111–127.
Zweck, J., & Williams, L.R. (2004). Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. Journal of Mathematical Imaging and Vision, 21(2), 135–154.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Duits, R., Franken, E. Left-Invariant Diffusions on the Space of Positions and Orientations and their Application to Crossing-Preserving Smoothing of HARDI images. Int J Comput Vis 92, 231–264 (2011). https://doi.org/10.1007/s11263-010-0332-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-010-0332-z