Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A (kn)-threshold dynamic quantum secure multiparty multiplication protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As one of the primitive operations of quantum cryptography, quantum secure multiparty multiplication plays an important role in practical applications. In this paper, we propose a (kn)-threshold dynamic quantum secure multiparty multiplication protocol. (i) Based on Shamir’s threshold scheme, the threshold (kn) can be implemented; (ii) In the multiparty multiplication phase, the cheating behavior of participants can be detected by the one-to-one correspondence of hash values; (iii) Any m participants can dynamically join or exit during the execution of the protocol. Moreover, the method of this paper can also achieve dynamic quantum secure multiparty summation. Further, the security analysis shows that our protocol is resistant to intercept-resend attack, entangle-measure attack, Trojan horse attack, and participant attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Kwek, L.C., Cao, L., Luo, W., Wang, Y.X., Sun, S.H., Wang, X.B., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31(1), 15 (2021)

    Article  Google Scholar 

  4. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B.J., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65(4), 240312 (2022)

    Article  ADS  Google Scholar 

  5. Li, Z.J., Wei, K.J.: Improving parameter optimization in decoy-state quantum key distribution. Quantum Eng. 2022, 9717591 (2022)

    Article  Google Scholar 

  6. Hu, W., Zhou, R.G., Li, X., Fan, P., Tan, C.Y.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf. Process. 20(5), 159 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  7. Li, F.L., Hu, H., Zhu, S.X., Yan, J.Y., Ding, J.: A verifiable \((k, n)\)-threshold dynamic quantum secret sharing scheme. Quantum Inf. Process. 21(7), 259 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  8. Yan, C., Li, Z., Liu, L., Lu, D.J.: Cheating identifiable \((k, n)\) threshold quantum secret sharing scheme. Quantum Inf. Process. 21(1), 8 (2022)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L., Liu, X.S.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  11. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722–725 (1996)

    Article  ADS  Google Scholar 

  13. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77(4), 042308 (2008)

    Article  ADS  Google Scholar 

  14. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64(1), 014301 (2001)

    Article  ADS  Google Scholar 

  15. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85(2), 022311 (2012)

    Article  ADS  Google Scholar 

  16. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21(4), 4093–4105 (2013)

    Article  ADS  Google Scholar 

  17. Lv, S.X., Zhao, Z.W., Zhou, P.: Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel. Quantum Inf. Process. 17(1), 8 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 643–652 (2002)

  19. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: 47th Annual IEEE Symposium on Foundations of Computer Science, vol. 249 (2006)

  20. Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure multi-party quantum computation with a dishonest majority. In: 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), pp. 729–758 (2020)

  21. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  22. Zhou, P., Lv, L.: Joint remote preparation of single-photon three-qubit state with hyperentangled state via linear-optical elements. Quantum Inf. Process. 19(9), 283 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  23. Yao, A.C.: Protocols for secure computations. In: 23rd IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  24. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression modeling via distributed computation. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 677–682 (2004)

  25. Ronald, C., Ivan, D., Robbert, D.H.: Atomic secure multi-party multiplication with low communication. In: 26th Annual International Conference on Theory and Applications of Cryptographic Techniques, vol. 4515, pp, 329–346 (2007)

  26. Shi, W.M., Peng, C.G.: A protocol of secure multi-party multiplication based on bilinear pairing. In: 2010 International Conference on Computational Intelligence and Security (CIS 2010), pp. 302–305 (2010)

  27. Li, S.D., Wang, D.S., Dai, Y.Q.: Efficient secure multiparty computational geometry. Chin. J. Electron. 19(2), 324–328 (2010)

    Google Scholar 

  28. Maheshwari, N., Kiyawat, K.: Structural framing of protocol for secure multiparty cloud computation. In: 2011 Fifth Asia Modelling Symposium IEEE, pp. 187–192 (2011)

  29. Bogdanov, D., Laur, S., Talviste, R.: A practical analysis of oblivious sorting algorithms for secure multi-party computation. In: Secure IT Systems 19th Nordic Conference, NordSec 2014. Proceedings: LNCS 8788, pp. 59–74 (2014)

  30. Sun, Y., Wen, Q.Y., Zhang, Y.D., Zhang, H., Jin, Z.P., Li, W.M.: Two-cloud-servers-assisted secure outsourcing multiparty computation. Sci. World J. 2014, 413265 (2014)

    Article  Google Scholar 

  31. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium of Foundation of Computer Science, pp. 124–134 (1994)

  32. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

  33. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  34. Lee, J., Lee, S., Kim, J., Oh, S.D.: Entanglement swapping secures multiparty quantum communication. Phys. Rev. A 70(3), 032305 (2004)

    Article  ADS  Google Scholar 

  35. Loukopoulos, K., Browne, D.E.: Secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 81(6), 062336 (2010)

    Article  ADS  Google Scholar 

  36. Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 2978–2982 (2020)

    Google Scholar 

  37. Lemus, M., Ramos, M.F., Yadav, P., Silva, N.A., Muga, N.J., Souto, A., Paunkovic, N., Mateus, P., Pinto, A.N.: Generation and distribution of quantum oblivious keys for secure multiparty computation. Appl. Sci. 10(12), 4080 (2020)

    Article  Google Scholar 

  38. Yi, X., Cao, C., Fan, L., et al.: Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform. Quantum Inf. Process. 20(7), 249 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  39. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  40. Lv, S.X., Jiao, X.F., Zhou, P.: Multiparty quantum computation for summation and multiplication with mutually unbiased bases. Int. J. Theor. Phys. 58(9), 2872–2882 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sutradhar, K., Om, H.: Hybrid quantum protocols for secure multiparty summation and multiplication. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  42. Sutradhar, K., Om, H.: A cost-effective quantum protocol for secure multi-party multiplication. Quantum Inf. Process. 20(11), 380 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Liu, W., Ma, M.Y.: An dynamic protocol for the quantum secure multi-party summation based on commutative encryption. In: Artificial Intelligence and Security. 5th International Conference, ICAIS 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11632), pp. 537–547 (2019)

  44. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16(3), 64 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Cai, Q.Y., Li, W.B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)

    Article  ADS  Google Scholar 

  47. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  48. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Wang, P., Zhang, R., Sun, Z.W.: Practical quantum key agreement protocol based on BB84. Quantum Inf. Comput. 22(3–4), 241–250 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Nos. U21A20428, 61972126 and 12171134) for supporting this research.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. U21A20428, 61972126 and 12171134).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by LFL, HH and ZSX; formal analysis was contributed by LFL, HH and ZSX; investigation was contributed by LFL and HH; methodology was contributed by LFL and HH; validation was contributed by LFL, HH and ZSX; writing—original draft, was contributed by LFL and HH; writing—review and editing, was contributed by LFL and HH

Corresponding author

Correspondence to Fulin Li.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Nos. U21A20428, 61972126 and 12171134).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Hu, H. & Zhu, S. A (kn)-threshold dynamic quantum secure multiparty multiplication protocol. Quantum Inf Process 21, 394 (2022). https://doi.org/10.1007/s11128-022-03743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03743-y

Keywords

Navigation