Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Some entanglement-assisted quantum MDS codes with large minimum distance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The construction of quantum maximum-distance-separable (MDS) error-correcting codes has become one of the hot topics in quantum coding theory. In this paper, based on classical Hermitian self-orthogonal generalized Reed–Solomon (GRS) codes, we construct some quantum MDS codes with large minimum distance. In addition, we obtain several families of MDS entanglement-assisted quantum error-correcting codes (EAQECCs) with flexible parameters. Notably, some of the distance parameters of our codes are greater than \(\frac{q}{2}+1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. Calderbank, A.R., Rains, E.M., Shor, P., Sloane, N.J.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  2. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)

    Article  MathSciNet  Google Scholar 

  4. Steane, A.M.: Enlargement of calderbank-shor-steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)

    Article  MathSciNet  Google Scholar 

  5. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    Article  MathSciNet  Google Scholar 

  6. Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Crypt. 83(3), 503–517 (2017)

    Article  MathSciNet  Google Scholar 

  7. Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  8. Fang, W., Fu, F.W.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(99), 7840–7847 (2019)

    Article  MathSciNet  Google Scholar 

  9. Fang, X., Luo, J.: New quantum MDS codes over finite fields. Quantum Inf. Process. 19(1), 1–17 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brun, T., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18(4), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  12. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(10), 1–18 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Grassl, M.: Entanglement-assisted quantum communication beating the quantum singleton bound. Phys. Rev. A 103(2), 020601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lai, C.-Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88(1), 012320 (2013)

    Article  ADS  Google Scholar 

  15. Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)

    Article  MathSciNet  Google Scholar 

  16. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Crypt. 86(7), 1565–1572 (2018)

    Article  MathSciNet  Google Scholar 

  18. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008)

    Article  ADS  Google Scholar 

  19. Shin, J., Heo, J., Brun, T.A.: Entanglement-assisted codeword stabilized quantum codes. Phys. Rev. A 84(6), 062321 (2011)

    Article  ADS  Google Scholar 

  20. Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18(2), 1–28 (2019)

    Article  MathSciNet  Google Scholar 

  21. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(12), 1–22 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Allahmadi, A., AlKenani, A., Hijazi, R., Muthana, N., Özbudak, F., Solé, P.: New constructions of entanglement-assisted quantum codes. Cryptogr. Commun. 14(1), 15–37 (2022)

    Article  MathSciNet  Google Scholar 

  23. Wang, G., Tang, C.: Application of GRS codes to some entanglement-assisted quantum MDS codes. Quantum Inf. Process. 21(3), 1–16 (2022)

    ADS  MathSciNet  Google Scholar 

  24. Fang, W., Fu, F.-W.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)

    Article  MathSciNet  Google Scholar 

  25. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  26. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  27. Grassl, M., Rötteler, M.: Quantum MDS codes over small fields. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 1104–1108 (2015)

  28. Hsieh, M.-H., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 062313 (2007)

    Article  ADS  Google Scholar 

  29. Lai, C.-Y., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2017)

    Article  MathSciNet  Google Scholar 

  30. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Crypt. 86(1), 121–136 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for useful comments and suggestions that improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12171114)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Tang, C. Some entanglement-assisted quantum MDS codes with large minimum distance. Quantum Inf Process 21, 286 (2022). https://doi.org/10.1007/s11128-022-03635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03635-1

Keywords

Navigation