Abstract
In this paper, the relationship between \({\pi }\)-tangle and quantum phase transition (QPT) is investigated by employing the quantum renormalization-group method in the one-dimensional anisotropic XY model. The results show that all the 1-tangles increase firstly and then decrease with the anisotropy parameter \(\gamma \) increasing, and the Coffman–Kundu–Wootters monogamy inequality is always tenable for this system. The entanglement’s status of subsystems depends on its site position, and this proposition can be generalized to a multipartite system. Meanwhile, with the increasing of the size of the system, the \({\pi }\)-tangle decreases slowly and tends to a fixed value finally. Additionally, it exhibits a QPT and a maximum value for the next-nearest-neighbor entanglement at the critical point in our model, which is different from the case of two-body system. After several iterations of the renormalization, the quantum entanglement measure can develop two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. To gain further insight, the nonanalytic and scaling behaviors of \({\pi }\)-tangle have also been analyzed in detail.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)
Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247–255 (2000)
Bell, J.S.: On the EPR paradox. Physics 1, 195 (1964)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature (London) 416, 608–610 (2002)
Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2000)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002). (London)
Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)
Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)
Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)
Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. II. Spin-correlation functions. Phys. Rev. A 3, 786 (1971)
Barouch, E., McCoy, B.M., Dresden, M.: Statistical Mechanics of the XY Model. I. Phys. Rev. A 2, 1075 (1970)
Abraham, D.B., Barouch, E., Gallavotti, G., Martin-Löf, A.: Thermalization of a magnetic impurity in the isotropic XY model. Phys. Rev. Lett. 25, 1449 (1970)
Franchini, F., Its, A.R., Jin, B.-Q., Korepin, V.E.: Ellipses of constant entropy in the XY spin chain. Phys. A 40, 8467–8478 (2007)
Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)
Pefeuty, P., Jullian, R., Penson, K.L.: In: Burkhardt, T.W., van Leeuwen, J.M.J. (eds.) Real-Space Renormalizaton, Springer, Berlin (1982)
Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)
Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)
Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402(R) (2004)
Song, X.K., Wu, T., Ye, L.: The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model. Quantum Inf. Process. 12, 3305–3317 (2013)
Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304(R) (2007)
Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)
Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)
Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141–1153 (2013)
Xu, Y.L., Zhang, X., Liu, Z.Q., Kong, X.M., Ren, T.Q.: Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices. Eur. Phys. J. B 87, 132 (2014)
Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (NY) 16, 407 (1961)
Gupta, R., DeLapp, J., Batrouni, G.G., Fox, G.C., Baille, C.F., Apostolakis, J.: Phase transition in the 2D XY Model. Phys. Rev. Lett. 61, 1996 (1988)
Olsson, P.: Two phase transitions in the fully frustrated XY model. Phys. Rev. Lett. 75, 2758 (1995)
Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)
Abanov, A.G., Franchini, F.: Emptiness formation probability for the anisotropic XY spin chain in a magnetic field. Phys. Lett. A 316, 342 (2003)
Franchini, F., Abanov, A.G.: Asymptotics of Toeplitz determinants and the emptiness formation probability for the XY spin chain. J. Phys. A 38, 5069 (2005)
Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)
Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)
Latorre, J.I., Lütken, C.A., Rico, E., Vidal, G.: Fine-grained entanglement loss along renormalization-group flows. Phys. Rev. A 71, 034301 (2005)
Acknowledgments
This work was supported by the National Science Foundation of China under Grant Nos. 11074002 and 61275119, the Doctoral Foundation of the Ministry of Education of China under Grant No. 20103401110003, the Personal Development Foundation of Anhui Province (2008Z018), and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, CC., Xu, S., He, J. et al. Unveiling \({\pi }\)-tangle and quantum phase transition in the one-dimensional anisotropic XY model. Quantum Inf Process 14, 2013–2024 (2015). https://doi.org/10.1007/s11128-015-0982-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-0982-4