Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Unveiling \({\pi }\)-tangle and quantum phase transition in the one-dimensional anisotropic XY model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, the relationship between \({\pi }\)-tangle and quantum phase transition (QPT) is investigated by employing the quantum renormalization-group method in the one-dimensional anisotropic XY model. The results show that all the 1-tangles increase firstly and then decrease with the anisotropy parameter \(\gamma \) increasing, and the Coffman–Kundu–Wootters monogamy inequality is always tenable for this system. The entanglement’s status of subsystems depends on its site position, and this proposition can be generalized to a multipartite system. Meanwhile, with the increasing of the size of the system, the \({\pi }\)-tangle decreases slowly and tends to a fixed value finally. Additionally, it exhibits a QPT and a maximum value for the next-nearest-neighbor entanglement at the critical point in our model, which is different from the case of two-body system. After several iterations of the renormalization, the quantum entanglement measure can develop two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. To gain further insight, the nonanalytic and scaling behaviors of \({\pi }\)-tangle have also been analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  5. Bell, J.S.: On the EPR paradox. Physics 1, 195 (1964)

    Google Scholar 

  6. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  7. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature (London) 416, 608–610 (2002)

    Article  ADS  Google Scholar 

  8. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  9. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002). (London)

    Article  ADS  Google Scholar 

  10. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  13. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. II. Spin-correlation functions. Phys. Rev. A 3, 786 (1971)

    Article  ADS  Google Scholar 

  15. Barouch, E., McCoy, B.M., Dresden, M.: Statistical Mechanics of the XY Model. I. Phys. Rev. A 2, 1075 (1970)

    Article  ADS  Google Scholar 

  16. Abraham, D.B., Barouch, E., Gallavotti, G., Martin-Löf, A.: Thermalization of a magnetic impurity in the isotropic XY model. Phys. Rev. Lett. 25, 1449 (1970)

    Article  ADS  Google Scholar 

  17. Franchini, F., Its, A.R., Jin, B.-Q., Korepin, V.E.: Ellipses of constant entropy in the XY spin chain. Phys. A 40, 8467–8478 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  19. Pefeuty, P., Jullian, R., Penson, K.L.: In: Burkhardt, T.W., van Leeuwen, J.M.J. (eds.) Real-Space Renormalizaton, Springer, Berlin (1982)

  20. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  21. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

  22. Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402(R) (2004)

    Article  ADS  Google Scholar 

  23. Song, X.K., Wu, T., Ye, L.: The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model. Quantum Inf. Process. 12, 3305–3317 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304(R) (2007)

    Article  ADS  Google Scholar 

  25. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

  26. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  27. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  28. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  29. Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141–1153 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Xu, Y.L., Zhang, X., Liu, Z.Q., Kong, X.M., Ren, T.Q.: Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices. Eur. Phys. J. B 87, 132 (2014)

    Article  ADS  Google Scholar 

  31. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (NY) 16, 407 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Gupta, R., DeLapp, J., Batrouni, G.G., Fox, G.C., Baille, C.F., Apostolakis, J.: Phase transition in the 2D XY Model. Phys. Rev. Lett. 61, 1996 (1988)

    Article  ADS  Google Scholar 

  33. Olsson, P.: Two phase transitions in the fully frustrated XY model. Phys. Rev. Lett. 75, 2758 (1995)

    Article  ADS  Google Scholar 

  34. Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  35. Abanov, A.G., Franchini, F.: Emptiness formation probability for the anisotropic XY spin chain in a magnetic field. Phys. Lett. A 316, 342 (2003)

    Article  ADS  MATH  Google Scholar 

  36. Franchini, F., Abanov, A.G.: Asymptotics of Toeplitz determinants and the emptiness formation probability for the XY spin chain. J. Phys. A 38, 5069 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  39. Latorre, J.I., Lütken, C.A., Rico, E., Vidal, G.: Fine-grained entanglement loss along renormalization-group flows. Phys. Rev. A 71, 034301 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 11074002 and 61275119, the Doctoral Foundation of the Ministry of Education of China under Grant No. 20103401110003, the Personal Development Foundation of Anhui Province (2008Z018), and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CC., Xu, S., He, J. et al. Unveiling \({\pi }\)-tangle and quantum phase transition in the one-dimensional anisotropic XY model. Quantum Inf Process 14, 2013–2024 (2015). https://doi.org/10.1007/s11128-015-0982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0982-4

Keywords

Navigation