Abstract
A new value for the parameter in Dai and Liao conjugate gradient algorithm is presented. This is based on the clustering of eigenvalues of the matrix which determine the search direction of this algorithm. This value of the parameter lead us to a variant of the Dai and Liao algorithm which is more efficient and more robust than the variants of the same algorithm based on minimizing the condition number of the matrix associated to the search direction. Global convergence of this variant of the algorithm is briefly discussed.
Similar content being viewed by others
References
Andrei, N.: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213, 361–369 (2009)
Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10, 147–161 (2008)
Andrei, N.: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci. Soc. 34, 319–330 (2011)
Axelsson, O.: A class of iterative methods for finite element equations. Comput. Methods Appl. Mech. Eng. 9, 123–137 (1976)
Axelsson, O., Lindskog, G.: On the rate of convergence of the preconditioned conjugate gradient methods. Numer. Math. 48, 499–523 (1986)
Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234, 625–630 (2014)
Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTEr: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 (1995)
Dai, Y.H., Kou, C.X.: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 23, 296–320 (2013)
Dai, Y.H., Liao, L.Z.: New conjugate conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43, 87–101 (2001)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)
Hestenes, M.R., Steifel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. Sec. B 48, 409–436 (1952)
Kaporin, I.E.: New convergence results and preconditioning strategies for the conjugate gradient methods. Numer. Linear Algebra Appl. 1, 179–210 (1994)
Kratzer, D., Parter, S.V., Steuerwalt, M.: Block splittings for the conjugate gradient method. Comput. Fluids 11, 255–279 (1983)
Meurant, G.: Computer solution of large linear systems. Studies in Mathematics and its Applications, vol 28. North Holland, Elsevier, Amsterdam (1999)
Pestana, J., Wathen, A.J.: On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. J. Comput. Appl. Math. 249, 57–68 (2013)
Reid, J.K.: On the method of conjugate gradients for solution of large sparse systems of linear equations. In: Reid, J.K. (ed.) Large Sparse Sets of Linear Equations, pp 231–254. Academic Press, London (1971)
Strakoš, Z.: On the real convergence rate of the conjugate gradient method. Linear Algebra Appl. 154–156, 535–549 (1991)
Sun, W., Yuan, Y.X.: Optimization theory and methods. Nonlinear Programming. Springer Science + Business Media, New York (2006)
Van der Sluis, A., Van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math. 48, 543–560 (1986)
Winther, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17, 14–17 (1980)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Andrei, N. A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues. Numer Algor 77, 1273–1282 (2018). https://doi.org/10.1007/s11075-017-0362-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0362-5