Abstract
In this paper, we introduce and study degenerate state-dependent sweeping processes with nonregular moving sets (subsmooth and positively \(\alpha \)-far). Based on the Moreau–Yosida regularization, we prove the existence of solutions under the Lipschitzianity of the moving sets with respect to the truncated Hausdorff distance.
Similar content being viewed by others
References
Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Springer (2011)
Adly, S., Haddad, T.: Well-posedness of nonconvex degenerate sweeping process via unconstrained evolution problems. Nonlinear Anal. Hybrid Syst. 36, 100832, 13 (2020)
Adly, S., Le, B.K.: Unbounded second-order state-dependent Moreau’s sweeping processes in Hilbert spaces. J. Optim. Theory Appl. 169(2), 407–423 (2016)
Aliouane, F., Azzam-Laouir, D., Castaing, C., Monteiro-Marques, M.D.P.: Second-order time and state-dependent sweeping process In Hilbert space. J. Optim. Theory Appl. 182(1), 153–188 (2019)
Aliprantis, C., Border, K.: Infinite Dimensional Analysis, 3rd edn. Springer (2006)
Aubin, J.P., Cellina, A.: Differential Inclusions, volume 264 of Grundlehren Math. Wiss. Springer-Verlag (1984)
Borwein, J., Fitzpatrick, S., Giles, J.: The differentiability of real functions on normed linear space using generalized subgradients. J. Math. Anal. Appl. 128(2), 512–534 (1987)
Bothe, D.: Multivalued perturbations of \(m\)-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)
Brogliato, B.: Nonsmooth Mechanics. Communications and Control Engineering Series, 3rd edn. Springer (2016)
Brogliato, B., Tanwani, A.: Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness, and stability. SIAM Rev. 62(1), 3–129 (2020)
Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory. Grad, vol. 178. Texts in Math. Springer-Verlag, New York (1998)
Deimling, K.: Multivalued Differential Equations. de Gruyter Ser, vol. 1. Nonlinear Anal. Appl. Walter de Gruyter & Co., Berlin (1992)
Deutsch, F.: Best Approximation in Inner Product Spaces, volume 7 of CMS Books Math./Ouvrages Math. SMC. Springer-Verlag, New York (2001)
Gidoni, P.: Rate-independent soft crawlers. Quart. J. Mech. Appl. Math. 71(4), 369–409 (2018)
Haddad, T., Jourani, A., Thibault, L.: Reduction of sweeping process to unconstrained differential inclusion. Pac. J. Optim. 4(3), 493–512 (2008)
Haddad, T., Kecis, I., Thibault, L.: Reduction of state dependent sweeping process to unconstrained differential inclusion. J. Global Optim. 62(1), 167–182 (2015)
Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis. vol. I, volume 419 of ath. Appl. Kluwer Academic Publishers, Dordrecht (1997) (Theory)
Jourani, A., Vilches, E.: Positively \(\alpha \)-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23(3), 775–821 (2016)
Jourani, A., Vilches, E.: Galerkin-like method and generalized perturbed sweeping process with nonregular sets. SIAM J. Control Optim. 55(4), 2412–2436 (2017)
Jourani, A., Vilches, E.: Moreau-Yosida Regularization of State-dependent Sweeping Processes With Nonregular Sets. J. Optim. Theory Appl. 173(1), 91–116 (2017)
Jourani, A., Vilches, E.: A differential equation approach to implicit sweeping processes. J. Differ. Equ. 266(8), 5168–5184 (2019)
Kecies, M., Haddad, T., Sene, M.: Degenerate sweeping process with a Lipschitz perturbation. In: Applicable Analysis, pages 1–23 (2019)
Krejc̆i, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations, volume 8 of GAKUTO Internat. Ser. Math. Sci. Appl. Gakkōtosho Co., Ltd., Tokyo (1996)
Kunze, M., Monteiro Marques, M.D.P.: On the discretization of degenerate sweeping processes. Portugal. Math. 55(2), 219–232 (1998)
Kunze, M., Monteiro Marques, M.D.P.: Degenerate sweeping processes. In: Argoul, P., Frémond, M., Nguyen, Q.S., (eds) Variations of domain and free-boundary problems in solid mechanics (Paris, 1997), volume 66 of Solid Mech. Appl., pp 301–307. Kluwer Acad. Publ., Dordrecht (1999)
Kunze, M., Monteiro Marques, Manuel DP.: Existence of solutions for degenerate sweeping processes. J. Convex Anal. 4(1), 165–176 (1997)
Kunze, M., Monteiro-Marques, M.D.P.: Yosida-Moreau regularization of sweeping processes with unbounded variation. J. Differ. Equ. 130(2), 292–306 (1996)
Kunze, M., Monteiro-Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B., (ed), Impacts in Mechanical Systems (Grenoble, 1999), volume 551 of Lecture Notes in Phys., pp 1–60. Springer, Berlin (2000)
Maury, B., Venel, J.: Un Modèle de Mouvements de Foule. ESAIM Proc. 18, 143–152 (2007)
Mazade, M., Thibault, L.: Regularization of differential variational inequalities with locally prox-regular sets. Math. Program. 139(1–2, Ser. B), 243–269 (2013)
Monteiro-Marques, M.D.P.: Regularization and graph approximation of a discontinuous evolution problem. J. Differ. Equ. 67(2), 145–164 (1987)
Monteiro-Marques, M.D.P.: Differential inclusions in nonsmooth mechanical problems. Progr, vol. 9. Nonlinear Differential Equations Appl. Birkhäuser Verlag, Basel (1993)
Moreau, J.J.: Rafle Par Un convexe variable. I. In: Travaux du Séminaire d’Analyse Convexe, vol. I, Exp. No. 15, pp. 1–43. U.É.R. de Math., Univ. Sci. Tech. Languedoc, Montpellier (1971)
Moreau, J.J.: Rafle Par Un convexe variable. II. In: Travaux du Séminaire d’Analyse Convexe, vol. II, Exp. No. 3, pp. 1–36. U.É.R. de Math., Univ. Sci. Tech. Languedoc, Montpellier (1972)
Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26(3), 347–374 (1977)
Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Engrg. 177(3–4), 329–349 (1999)
Nacry, F., Thibault, L.: Regularization of sweeping process: old and new. Pure Appl. Funct. Anal. 4(1), 59–117 (2019)
Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)
Recupero, V.: \(BV\) Continuous sweeping processes. J. Differ. Equ. 259(8), 4253–4272 (2015)
Recupero, V.: Sweeping processes and rate independence. J. Convex Anal. 23(4), 921–946 (2016)
Recupero, V.: Convex valued geodesics and applications to sweeping processes with bounded retraction. J. Convex Anal. 27(2), 537–558 (2020)
Sene, M., Thibault, L.: Regularization of dynamical systems associated with Prox-regular moving sets. J. Nonlinear Convex Anal. 15(4), 647–663 (2014)
Thibault, L.: Regularization of nonconvex sweeping process in Hilbert space. Set-Valued Anal. 16(2–3), 319–333 (2008)
Thibault, L.: Moreau sweeping process with bounded truncated retraction. J. Convex Anal. 23(4), 1051–1098 (2016)
Tolstonogov, A.A.: Sweeping process with unbounded nonconvex perturbation. Nonlinear Anal. 108, 291–301 (2014)
Zeng, S., Vilches, E.: Well-posedness of history/state-dependent implicit sweeping processes. J. Optim. Theory Appl. 186(3), 960–984 (2020)
Acknowledgements
The authors wish to thank the referees for providing several helpful suggestions. Diana Narváez was supported by Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for center of excellence, Fondecyt Regular N\(^{\circ }\) 1171854, and Fondecyt Regular N\(^{\circ }\) 1190012 from ANID-Chile. Emilio Vilches was supported by Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for center of excellence, Fondecyt de Iniciación N\(^{\circ }\) 11180098 and Fondecyt Regular 1200283 from ANID-Chile.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Boris S. Mordukhovich.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Narváez, D., Vilches, E. Moreau–Yosida Regularization of Degenerate State-Dependent Sweeping Processes. J Optim Theory Appl 193, 910–930 (2022). https://doi.org/10.1007/s10957-022-02030-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02030-1
Keywords
- Moreau–Yosida regularization
- Subsmooth sets
- Degenerate sweeping process
- Positively \(\alpha \)-far sets
- Normal cone