Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Survey on the Optimization of Security Components Placement in Internet of Things

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) environment has become the basic channel for the propagation of Distributed Denial of Service (DDoS) and malware intrusions. Cyber threats in IoT require new mechanisms and strategies to secure devices during their life cycle. These threats are real for operators and manufacturers of connected objects. Less and uncorrected secure devices are priority objectives for botnet operators to capture and obtain testing devices. In this article, we reviewed the problem of optimizing the placement of security components in IoT. We provide a generic view of the placement of security components at different levels in the IoT. First, we present an overview of IoT. Then, we conduct a demonstration and a thematic classification of numerous solutions for the placement of security components in the IoT. Thus, this presentation will be followed by a discussion of diverse research questions and a set of proposals for various future orientations of this domain to advance the problem resolution in this research article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  2. Wortmann, F., Flüchter, K.: Internet of things. Bus. Inf. Syst. Eng. 57(3), 221–224 (2015)

    Article  Google Scholar 

  3. Sun, M., Liu, Y., Liu, K.: Security problem analysis and security mechanism research of the internet of things. Secr. Sci. Technol. 11, 61–66 (2011)

    Google Scholar 

  4. Zhang, J., Chen, H., Gong, L., Cao, J., Gu, Z.: The current research of iot security. In: 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC), pp. 346–353. IEEE (2019)

  5. Sethi, M., Arkko, J., Keränen, A.: End-to-end security for sleepy smart object networks. In: 37th Annual IEEE Conference on Local Computer Networks-Workshops, pp. 964–972. IEEE (2012)

  6. Bormann, C., Castellani, A.P., Shelby, Z.: Coap: an application protocol for billions of tiny internet nodes. IEEE Internet Comput. 16(2), 62–67 (2012)

    Article  Google Scholar 

  7. Adat, V., Gupta, B.B.: Security in internet of things: issues, challenges, taxonomy, and architecture. Telecommun. Syst. 67, 423–441 (2018)

    Article  Google Scholar 

  8. : Bohli, J.-M., Skarmeta, A., Moreno, M. V., García, D., Langendörfer, P.: Smartie project: secure iot data management for smart cities. In: 2015 International Conference on Recent Advances in Internet of Things (RIoT), pp. 1–6. IEEE (2015)

  9. Hernández-Ramos, J.L., Jara, A.J., Marín, L., Skarmeta Gómez, A.F.: Dcapbac: embedding authorization logic into smart things through ecc optimizations. Int. J. Comput. Math. 93(2), 345–366 (2016)

    Article  Google Scholar 

  10. Vučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti, R.: Oscar: object security architecture for the internet of things. Ad Hoc Netw. 32, 3–16 (2015)

    Article  Google Scholar 

  11. Lindemann, R., Baghdasaryan, D., Tiffany, E.: Fido universal authentication framework protocol, Version v1. 0-rd-20140209, FIDO Alliance, February (2014)

  12. Yoon, M., Baek, J.: A study on framework for developing secure iot service. In: Ann, R. (ed.) Advances in Computer Science and Ubiquitous Computing, pp. 289–294. Springer, Singapore (2015)

    Chapter  Google Scholar 

  13. Stajano, F.: Pico: no more passwords! In: International Workshop on Security Protocols, pp. 49–81. Springer, Berlin (2011)

    Google Scholar 

  14. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (coap), Tech. rep. (2014)

  15. Rullo, A., Serra, E., Bertino, E., Lobo, J.: Optimal placement of security resources for the internet of things. In: The Internet of Things for Smart Urban Ecosystems, pp. 95–124. Springer, Cham (2019)

    Chapter  Google Scholar 

  16. Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., Fang, B.: A survey on access control in the age of internet of things. IEEE Internet Things J. 7(6), 4682–4696 (2020)

    Article  Google Scholar 

  17. Meloni, C., Pranzo, M.: Expected shortfall for the Makespan in activity networks under imperfect information. Flex. Serv. Manuf. J. 32(3), 668–692 (2020)

    Article  Google Scholar 

  18. Latif, S., Akraam, S., Karamat, T., Khan, M.A., Altrjman, C., Mey, S., Nam, Y.: An efficient pareto optimal resource allocation scheme in cognitive radio-based internet of things networks. Sensors 22(2), 451 (2022)

    Article  Google Scholar 

  19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering version 2.3. (2007)

  20. Chahid, Y., Benabdellah, M., Azizi, A.: Internet of things security. In: 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–6. IEEE (2017)

  21. Parker, D.B.: Fighting Computer Crime: A New Framework for Protecting Information. Wiley, Hoboken (1998)

    Google Scholar 

  22. Ashton, K., et al.: That ‘internet of things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  23. Buckley, J., et al.: The internet of things: from rfid to the next-generation pervasive networked systems (2006)

  24. Ning, H., Wang, Z.: Future internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011)

    Article  Google Scholar 

  25. Jing, Q., Vasilakos, A.V., Wan, J., Lu, J., Qiu, D.: Security of the internet of things: perspectives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014)

    Article  Google Scholar 

  26. Yang, Z., Yue, Y., Yang, Y., Peng, Y., Wang, X., Liu, W.: Study and application on the architecture and key technologies for iot. In: 2011 International Conference on Multimedia Technology, pp. 747–751. IEEE (2011)

  27. Tewari, A., Gupta, B.B.: Security, privacy and trust of different layers in internet-of-things (iots) framework. Future Gener. Comput. Syst. 108, 909–920 (2020)

    Article  Google Scholar 

  28. Elkhiyaoui, K., Blass, E.-O., Molva, R.: Checker: On-site checking in rfid-based supply chains. In: Proceedings of the Fifth ACM Con Security and Privacy in Wireless and Mobile Networks, pp. 173–184. (2012)

  29. Mehboob, U., Zaib, Q., Usama, C.: Survey of IoT Communication Protocols Techniques, Applications, and Issues. xFlow Research Inc, Islamabad (2016)

    Google Scholar 

  30. Hossain, M.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues, challenges, and open problems in the internet of things. In: IEEE World Congress on Services, pp. 21–28, IEEE (2015)

  31. Sun, J., Chen, C.: Initial study on iot security. Commun. Technol. 45(7) (2012)

  32. Malina, L., Hajny, J., Fujdiak, R., Hosek, J.: On perspective of security and privacy-preserving solutions in the internet of things. Comput. Netw. 102, 83–95 (2016)

    Article  Google Scholar 

  33. Raghavendra, K., Nireshwalya, S.: Application layer security issues and its solutions. Int. J. Comput. Sci. Eng. Technol. 2(6) (2012)

  34. Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., Du, H.-Y.: Research on the architecture of internet of things. In: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Vol. 5., pp. V5-484. IEEE (2010)

  35. Krichen, M., Alroobaea, R.; Optimizing the placement of security testing components for internet of things architectures (2020)

  36. Fips, N.: Advanced encryption standard (aes) fips pub 197, Technology Laboratory, National Institute of Standards... 2009, pp. 8–12. (2001)

  37. Huang, K.: Accountable and revocable large universe decentralized multi-authority attribute-based encryption for cloud-aided iot. IEEE Access 9, 123786–123804 (2021)

    Article  Google Scholar 

  38. Rivest, R. L., Shamir, A., Adleman, L. M.: Cryptographic communications system and method, uS Patent 4,405,829 (1983)

  39. Tarouco, L.M.R., Bertholdo, L.M., Granville, L.Z., Arbiza, L.M.R., Carbone, F., Marotta, M., De Santanna, J.J.C.: Internet of things in healthcare: interoperatibility and security issues. In: IEEE International Conference on Communications (ICC), pp. 6121–6125. IEEE (2012)

  40. Ban, H.J., Choi, J., Kang, N.: Fine-grained support of security services for resource constrained internet of things. Int. J. Distrib. Sens. Netw. 12(5), 7824686 (2016)

    Article  Google Scholar 

  41. Thangarasu, G., Dominic, P., bin Othman, M., Sokkalingam, R., Subramanian, K.: An efficient energy consumption technique in integrated wsn-iot environment operations. In: 2019 IEEE Student Conference on Research and Development (SCOReD), pp. 45–48. IEEE (2019)

  42. Hameed, S., Khan, F.I., Hameed, B.: Understanding security requirements and challenges in internet of things (iot): a review. J. Comput. Netw. Commun. 2019, 9629381 (2019)

    Google Scholar 

  43. Alharbi, S., Rodriguez, P., Maharaja, R., Iyer, P., Bose, N., Ye, Z., Focus: A fog computing-based security system for the internet of things. In: 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–5. IEEE (2018)

  44. Chen, K., Zhang, S., Li, Z., Zhang, Y., Deng, Q., Ray, S., Jin, Y.: Internet-of-things security and vulnerabilities: taxonomy, challenges, and practice. J. Hardw. Syst. Secur. 2(2), 97–110 (2018)

    Article  Google Scholar 

  45. Dos Santos, G.L., Guimarães, V.T., da Cunha Rodrigues, G., Granville, L.Z., Tarouco, L.M.R.: A dtls-based security architecture for the internet of things. In: IEEE Symposium on Computers and Communication (ISCC), pp. 809–815. IEEE (2015)

  46. Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., Carle, G.: Dtls based security and two-way authentication for the internet of things. Ad Hoc Netw. 11(8), 2710–2723 (2013)

    Article  Google Scholar 

  47. Adat, V., Gupta, B.B.: Security in internet of things: issues, challenges, taxonomy, and architecture. Telecommun. Syst. 67(3), 423–441 (2018)

    Article  Google Scholar 

  48. Wu, H., Wang, W.: A game theory based collaborative security detection method for internet of things systems. IEEE Trans. Inf. Forensics Secur. 13(6), 1432–1445 (2018)

    Article  Google Scholar 

  49. Zhang, S., Xu, X., Peng, J., Huang, K., Li, Z.: Physical layer security in massive internet of things: delay and security analysis. IET Commun. 13(1), 93–98 (2019)

    Article  Google Scholar 

  50. Wazid, M., Das, A.K., Odelu, V., Kumar, N., Conti, M., Jo, M.: Design of secure user authenticated key management protocol for generic iot networks. IEEE Internet Things J. 5(1), 269–282 (2017)

    Article  Google Scholar 

  51. Dashti, S.E., Rahmani, A.M.: Dynamic vms placement for energy efficiency by pso in cloud computing. J. Exp. Theor. Artif. Intell. 28(1–2), 97–112 (2016)

    Article  Google Scholar 

  52. Sarma, V.A.K., Rajendra, R., Dheepan, P., Kumar, K.S.: An optimal ant colony algorithm for efficient vm placement. Indian J. Sci. Technol. 8(S2), 156–159 (2015)

    Article  Google Scholar 

  53. Mosa, A., Paton, N.W.: Optimizing virtual machine placement for energy and sla in clouds using utility functions. J. Cloud Comput. 5(1), 1–17 (2016)

    Article  Google Scholar 

  54. Nazir, A., Sholla, S., Bashir, A.: An ontology based approach for context-aware security in the internet of things (iot). Int. J. Wirel. Microw. Technol. (IJWMT) 11(1), 28–46 (2021)

    Google Scholar 

  55. Khalid, U., Asim, M., Baker, T., Hung, P.C., Tariq, M.A., Rafferty, L.: A decentralized lightweight blockchain-based authentication mechanism for iot systems. Clust. Comput. 23(3), 2067–2087 (2020)

    Article  Google Scholar 

  56. Aloqaily, M., Al Ridhawi, I., Salameh, H.B., Jararweh, Y.: Data and service management in densely crowded environments: challenges, opportunities, and recent developments. IEEE Commun. Mag. 57(4), 81–87 (2019)

    Article  Google Scholar 

  57. Rathee, G., Sharma, A., Iqbal, R., Aloqaily, M., Jaglan, N., Kumar, R.: A blockchain framework for securing connected and autonomous vehicles. Sensors 19(14), 3165 (2019)

    Article  Google Scholar 

  58. Al Ridhawi, I., Kotb, Y., Aloqaily, M., Jararweh, Y., Baker, T.: A profitable and energy-efficient cooperative fog solution for iot services. IEEE Trans. Ind. Inform. 16(5), 3578–3586 (2019)

    Article  Google Scholar 

  59. Gong-Guo, Z., Wan, Z.: Blockchain-based iot security authentication system. In: 2021 International Conference on Computer, Blockchain and Financial Development (CBFD), pp. 415–418. IEEE (2021)

  60. Gomes, D.R., Lins, F.A.A., Nóbrega, O.O., Felix, E.F., Jesus, B.A., Vieira, M.: Security evaluation of authentication requirements in iot gateways. J. Netw. Syst. Manage. 31(4), 67 (2023)

    Article  Google Scholar 

  61. Kulkarni, D.D., Jaiswal, R.K.: An intrusion detection system using extended Kalman filter and neural networks for iot networks. J. Netw. Syst. Manage. 31(3), 56 (2023)

    Article  Google Scholar 

  62. Jullian, O., Otero, B., Rodriguez, E., Gutierrez, N., Antona, H., Canal, R.: Deep-learning based detection for cyber-attacks in iot networks: a distributed attack detection framework. J. Netw. Syst. Manage. 31(2), 33 (2023)

    Article  Google Scholar 

  63. Sivanathan, A., Gharakheili, H.H., Sivaraman, V.: Managing iot cyber-security using programmable telemetry and machine learning. IEEE Trans. Netw. Serv. Manage. 17(1), 60–74 (2020)

    Article  Google Scholar 

  64. Fabian, B., Gunther, O.: Distributed ons and its impact on privacy. In: 2007 IEEE International Conference on Communications, pp. 1223–1228. IEEE (2007)

  65. Santos, J., Rodrigues, J.J., Silva, B.M., Casal, J., Saleem, K., Denisov, V.: An iot-based mobile gateway for intelligent personal assistants on mobile health environments. J. Netw. Comput. Appl. 71, 194–204 (2016)

    Article  Google Scholar 

  66. Samy, M.M., Anis, W.R., Abdel-Hafez, A.A., Eldemerdash, H.D.: An optimized protocol of m2m authentication for internet of things (iot). Int. J. Comput. Netw. Inf. Secur. 13(2), 29 (2021)

    Google Scholar 

  67. Ngabo, D., Wang, D., Iwendi, C., Anajemba, J.H., Ajao, L.A., Biamba, C.: Blockchain-based security mechanism for the medical data at fog computing architecture of internet of things. Electronics 10(17), 2110 (2021)

    Article  Google Scholar 

  68. Pelekoudas-Oikonomou, F., Zachos, G., Papaioannou, M., de Ree, M., Ribeiro, J.C., Mantas, G., Rodriguez, J.: Blockchain-based security mechanisms for iomt edge networks in iomt-based healthcare monitoring systems. Sensors 22(7), 2449 (2022)

    Article  Google Scholar 

  69. Lv, Z.: Security of internet of things edge devices. Softw.: Pract. Exp. 51(12), 2446–2456 (2021)

    Google Scholar 

  70. Rullo, A., Serra, E., Bertino, E., Lobo, J.: Shortfall-based optimal placement of security resources for mobile iot scenarios. In: European Symposium on Research in Computer Security, pp. 419–436. Springer (2017)

  71. Zhang, Q., Zhu, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic service placement in geographically distributed clouds. IEEE J. Sel. Areas Commun. 31(12), 762–772 (2013)

    Article  Google Scholar 

  72. Ooi, B.Y., Chan, H.Y., Cheah, Y.-N.: Dynamic service placement and redundancy to ensure service availability during resource failures. In: International Symposium on Information Technology, Vol. 2, pp. 715–720. IEEE (2010)

  73. Velasquez, K., Abreu, D.P., Curado, M., Monteiro, E.: Service placement for latency reduction in the internet of things. Ann. Telecommun. 72(1), 105–115 (2017)

    Article  Google Scholar 

  74. Mokni, M., Yassa, S., Hajlaoui, J.E., Chelouah, R., Omri, M.N.: Cooperative agents-based approach for workflow scheduling on fog-cloud computing. J. Ambient Intell. Humaniz. Comput. 13(10), 4719–4738 (2022)

    Article  Google Scholar 

  75. Cao, B., Zhang, Y., Zhao, J., Liu, X., Skonieczny, Ł, Lv, Z.: Recommendation based on large-scale many-objective optimization for the intelligent internet of things system. IEEE Internet Things J. 9, 15030 (2021)

    Article  Google Scholar 

  76. Liu, Q., Zhang, H., Wan, J., Chen, X.: An access control model for resource sharing based on the role-based access control intended for multi-domain manufacturing internet of things. IEEE Access 5, 7001–7011 (2017)

    Article  Google Scholar 

  77. Bu, D., Liao, Y., Shi, J., Peng, H.: Dynamic expected shortfall: a spectral decomposition of tail risk across time horizons. J. Econ. Dyn. Control 108, 103753 (2019)

    Article  MathSciNet  Google Scholar 

  78. Serra, E., Jajodia, S., Pugliese, A., Rullo, A., Subrahmanian, V.: Pareto-optimal adversarial defense of enterprise systems. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(3), 1–39 (2015)

    Article  Google Scholar 

  79. Rullo, A., Midi, D., Serra, E., Bertino, E.: Pareto optimal security resource allocation for internet of things. ACM Trans. Priv. Secur. (TOPS) 20(4), 1–30 (2017)

    Article  Google Scholar 

  80. Jiang, W., Li, E., Zhou, W., Yang, Y., Luo, T.: Iot access control model based on blockchain and trusted execution environment. Processes 11(3), 723 (2023)

    Article  Google Scholar 

  81. Zhang, Z., Wu, G., Ning, K.: Optimizing the access control system for iota tangle: a game-theoretic perspective. In: 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 539–544. IEEE (2023)

  82. Godquin, T., Barbier, M., Gaber, C., Grimault, J.-L., Le Bars, J.-M.: Placement optimization of iot security solutions for edge computing based on graph theory. In: IEEE 38th International Performance Computing and Communications Conference (IPCCC), pp. 1–7. IEEE (2019)

  83. Seyfollahi, A., Ghaffari, A.: Reliable data dissemination for the internet of things using Harris hawks optimization. Peer-to-Peer Netw. Appl. 13, 1886–1902 (2020)

    Article  Google Scholar 

  84. Iwendi, C., Maddikunta, P.K.R., Gadekallu, T.R., Lakshmanna, K., Bashir, A.K., Piran, M.J.: A metaheuristic optimization approach for energy efficiency in the iot networks. Softw.: Pract. Exp. 51(12), 2558–2571 (2021)

    Google Scholar 

  85. Huang, T., Lin, W., Xiong, C., Pan, R., Huang, J.: An ant colony optimization-based multiobjective service replicas placement strategy for fog computing. IEEE Trans. Cybern. 51(11), 5595–5608 (2020)

    Article  Google Scholar 

  86. Abd Elaziz, M., Abualigah, L., Attiya, I.: Advanced optimization technique for scheduling iot tasks in cloud-fog computing environments. Future Gener. Comput. Syst. 124, 142–154 (2021)

    Article  Google Scholar 

  87. Baburao, D., Pavankumar, T., Prabhu, C.: Load balancing in the fog nodes using particle swarm optimization-based enhanced dynamic resource allocation method. Appl. Nanosci. 13(2), 1045–1054 (2023)

    Article  Google Scholar 

  88. Elhoseny, M., Shankar, K., Lakshmanaprabu, S., Maseleno, A., Arunkumar, N.: Hybrid optimization with cryptography encryption for medical image security in internet of things. Neural Comput. Appl. 32, 10979–10993 (2020)

    Article  Google Scholar 

  89. Rahman, A., Islam, M.J., Montieri, A., Nasir, M.K., Reza, M.M., Band, S.S., Pescape, A., Hasan, M., Sookhak, M., Mosavi, A.: Smartblock-sdn: an optimized blockchain-sdn framework for resource management in iot. IEEE Access 9, 28361–28376 (2021)

    Article  Google Scholar 

  90. Dhawan, S., Chakraborty, C., Frnda, J., Gupta, R., Rana, A.K., Pani, S.K.: Ssii: secured and high-quality steganography using intelligent hybrid optimization algorithms for iot. IEEE Access 9, 87563–87578 (2021)

    Article  Google Scholar 

  91. Yazdinejad, A., Parizi, R.M., Dehghantanha, A., Srivastava, G., Mohan, S., Rababah, A.M.: Cost optimization of secure routing with untrusted devices in software defined networking. J. Parallel Distrib. Comput. 143, 36–46 (2020)

    Article  Google Scholar 

  92. Zhang, W.-Z., Elgendy, I.A., Hammad, M., Iliyasu, A.M., Du, X., Guizani, M., Abd El-Latif, A.A.: Secure and optimized load balancing for multitier iot and edge-cloud computing systems. IEEE Internet Things J. 8(10), 8119–8132 (2020)

    Article  Google Scholar 

  93. Nithiyanandam, N., Rajesh, M., Sitharthan, R., Shanmuga Sundar, D., Vengatesan, K., Madurakavi, K.: Optimization of performance and scalability measures across cloud based iot applications with efficient scheduling approach. Int. J. Wirel. Inf. Netw. 29(4), 442–453 (2022)

    Article  Google Scholar 

  94. Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

  95. Mao, B., Kawamoto, Y., Kato, N.: Ai-based joint optimization of qos and security for 6g energy harvesting internet of things. IEEE Internet Things J. 7(8), 7032–7042 (2020)

    Article  Google Scholar 

  96. Mahmoud, M.S., Mohamad, A.A.: A study of efficient power consumption wireless communication techniques/modules for internet of things (iot) applications (2016)

  97. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (iot) communication protocols. In: 8th International conference on information technology (ICIT), pp. 685–690. IEEE (2017)

  98. Issarny, V., Billet, B., Bouloukakis, G., Florescu, D., Toma, C.: Lattice: A framework for optimizing iot system configurations at the edge. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1797–1805. IEEE (2019)

  99. Ferreira, D., Jr., Oliveira, J.L., Santos, C., Filho, T., Ribeiro, M., Freitas, L.A., Moreira, W., Oliveira-Jr, A.: Planning and optimization of software-defined and virtualized iot gateway deployment for smart campuses. Sensors 22(13), 4710 (2022)

    Article  Google Scholar 

  100. Xu, G., Dong, Y., Fu, X.: Vms placement strategy based on distributed parallel ant colony optimization algorithm. Appl. Math. Inf. Sci. 9(2), 873 (2015)

    MathSciNet  Google Scholar 

  101. Hong, L., Yufei, G.: Gaca-vmp: virtual machine placement scheduling in cloud computing based on genetic ant colony algorithm approach. In: IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 1008–1015. IEEE (2015)

  102. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42 (2015)

  103. Seddigh, M., Taheri, H., Sharifian, S.: Dynamic prediction scheduling for virtual machine placement via ant colony optimization. In: Signal Processing and Intelligent Systems Conference (SPIS), pp. 104–108. IEEE (2015)

  104. Han, J., Zang, W., Chen, S., Yu, M.: Reducing security risks of clouds through virtual machine placement. In: IFIP Annual Conference on Data and Applications Security and Privacy, pp. 275–292. Springer (2017)

  105. Naas, M. I., Parvedy, P. R., Boukhobza, J., Lemarchand, L.: ifogstor: an iot data placement strategy for fog infrastructure. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 97–104. IEEE (2017)

  106. Yang, B., Chai, W. K., Pavlou, G., Katsaros, K. V.: Seamless support of low latency mobile applications with nfv-enabled mobile edge-cloud. In: 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), pp. 136–141. IEEE (2016)

  107. Russo Russo, G., Cardellini, V., Presti, F. L., Nardelli, M.: Towards a security-aware deployment of data streaming applications in fog computing. In: Fog/Edge Computing For Security, Privacy, and Applications, pp. 355–385 Springer (2021)

  108. Han, J., Zang, W., Liu, L., Chen, S., Yu, M.: Risk-aware multi-objective optimized virtual machine placement in the cloud. J. Comput. Secur. 26(5), 707–730 (2018)

    Article  Google Scholar 

  109. Al-Hadadi, M., Al Shidhani, A.: Smartphone security awareness: time to act. In: International Conference on Current Trends in Information Technology (CTIT), pp. 166–171. IEEE (2013)

  110. Xu, J., Fortes, J. A.: Multi-objective virtual machine placement in virtualized data center environments. In: 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing, pp. 179–188. IEEE (2010)

  111. Yoshida, M., Shen, W., Kawabata, T., Minato, K., Imajuku, W.: Morsa: A multi-objective resource scheduling algorithm for nfv infrastructure. In: The 16th Asia-Pacific Network Operations and Management Symposium, pp. 1–6. IEEE (2014)

  112. Li, M., Zhang, Y., Bai, K., Zang, W., Yu, M., He, X.: Improving cloud survivability through dependency based virtual machine placement. In: SECRYPT, pp. 321–326. (2012)

  113. Tsolkas, D., Liotou, E., Passas, N., Merakos, L.: A survey on parametric qoe estimation for popular services. J. Netw. Comput. Appl. 77, 1–17 (2017)

    Article  Google Scholar 

  114. Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E. K., Moatti, Y., Lorenz, D. H.: Guaranteeing high availability goals for virtual machine placement. In: 2011 31st International Conference on Distributed Computing Systems, pp. 700–709. IEEE (2011)

  115. Phan, D. H., Suzuki, J., Carroll, R., Balasubramaniam, S., Donnelly, W., Botvich, D.: Evolutionary multiobjective optimization for green clouds. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 19–26. (2012)

  116. Yan, Q., Yu, F.R., Gong, Q., Li, J.: Software-defined networking (sdn) and distributed denial of service (ddos) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 18(1), 602–622 (2015)

    Article  Google Scholar 

  117. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized iot service placement in the fog. Serv. Oriented Comput. Appl. 11(4), 427–443 (2017)

    Article  Google Scholar 

  118. Chakrabarty, S., Engels, D.W.: A secure iot architecture for smart cities. In: 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 812–813. IEEE (2016)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding authors

Correspondence to Sana Said, Jalel Eddine Hajlaoui or Mohamed Nazih Omri.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, S., Hajlaoui, J.E. & Omri, M.N. A Survey on the Optimization of Security Components Placement in Internet of Things. J Netw Syst Manage 32, 77 (2024). https://doi.org/10.1007/s10922-024-09852-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09852-6

Keywords

Navigation