Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

EEG electrode selection for person identification thru a genetic-algorithm method

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

New biometric identification techniques are continually being developed to meet various applications. Electroencephalography (EEG) signals may provide a reasonable option for this type of identification due its unique features that overcome the lacks of other common methods. Currently, however, the processing load for such signals requires considerable time and labor. New methods and algorithms have attempted to reduce EEG processing time, including a reduction of the number of electrodes and segmenting the EEG data into its typical frequency bands. This work complements other efforts by proposing a genetic algorithm to reduce the number of necessary electrodes for measurements by EEG devices. Using a public EEG dataset of 109 subjects who underwent relaxation with eye-open and eye-closed stimuli, we aimed to determine the minimum set of electrodes required for optimum identification accuracy in each EEG sub-band of both stimuli. The results were encouraging and it was possible to accurately identify a subject using about 10 out of 64 electrodes. Moreover, higher frequency bands required a fewer number of electrodes for identification compared with lower frequency bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Oliveira, A. S., Schlink, B. R., David Hairston, W., König, P., Ferris, D. P., Hairston, W. D. et al., A channel rejection method for attenuating motion-related artifacts in EEG recordings during walking. Front Neurosci 11:1–17, 2017. https://doi.org/10.3389/fnins.2017.00225.

    Article  Google Scholar 

  2. Peled-Avron, L., Goldstein, P., Yellinek, S., Weissman-Fogel, I., and Shamay-Tsoory, S. G., Empathy during consoling touch is modulated by mu-rhythm: An EEG study. Neuropsychologia:0–1, 2017. https://doi.org/10.1016/j.neuropsychologia.2017.04.026.

    Article  CAS  PubMed  Google Scholar 

  3. Aliakbaryhosseinabadi, S., Kamavuako, E. N., Jiang, N., Farina, D., and Mrachacz-Kersting, N., Classification of EEG signals to identify variations in attention during motor task execution. J Neurosci Methods 284:27–34, 2017. https://doi.org/10.1016/j.jneumeth.2017.04.008.

    Article  PubMed  Google Scholar 

  4. Li, X., Samuel, O. W., Zhang, X., Wang, H., Fang, P., and Li, G., A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. J Neuroeng Rehabil 14:2, 2017. https://doi.org/10.1186/s12984-016-0212-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Szczuko, P., Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications. Multimed Tools Appl:1–15, 2017. https://doi.org/10.1007/s11042-017-4458-7.

    Article  Google Scholar 

  6. Kumari Sharma, P., and Vaish, A., Individual identification based on neuro-signal using motor movement and imaginary cognitive process. Optik (Stuttg) 127:2143–2148, 2016. https://doi.org/10.1016/j.ijleo.2015.09.020.

    Article  Google Scholar 

  7. Marchesotti, S., Bassolino, M., Serino, A., Bleuler, H., and Blanke, O., Quantifying the role of motor imagery in brain-machine interfaces. Sci Rep 6:24076, 2016. https://doi.org/10.1038/srep24076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arvaneh, M., Guan, C., Ang, K. K., and Quek, C., Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI. IEEE Trans Biomed Eng 58:1865–1873, 2011. https://doi.org/10.1109/TBME.2011.2131142.

    Article  PubMed  Google Scholar 

  9. Zhou Q, Jiang A, Liu X (2017) EEG channel optimization via sparse common spatial filter. 2017 IEEE Int. Conf. Acoust. Speech Signal Process., IEEE; p. 900–3. doi:https://doi.org/10.1109/ICASSP.2017.7952286.

  10. Chatchinarat A, Wong KW, Fung CC (2016) A comparison study on the relationship between the selection of EEG electrode channels and frequency bands used in classification for emotion recognition. 2016 Int. Conf. Mach. Learn. Cybern., vol. 1, IEEE; p. 251–6.:https://doi.org/10.1109/ICMLC.2016.7860909.

  11. Thomas, K. P., and Vinod, A. P., EEG-Based Biometric Authentication Using Gamma Band Power During Rest State. Circuits, Syst Signal Process 37:277–289, 2018. https://doi.org/10.1007/s00034-017-0551-4.

    Article  Google Scholar 

  12. Nakisa, B., Rastgoo, M. N., Tjondronegoro, D., and Chandran, V., Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst Appl 93:143–155, 2018. https://doi.org/10.1016/j.eswa.2017.09.062.

    Article  Google Scholar 

  13. Park, S.-M., Kim, J.-Y., and Sim, K.-B., EEG electrode selection method based on BPSO with channel impact factor for acquisition of significant brain signal. Opt - Int J Light Electron Opt 155:89–96, 2018. https://doi.org/10.1016/j.ijleo.2017.10.085.

    Article  CAS  Google Scholar 

  14. Kee, C. Y., Ponnambalam, S. G., and Loo, C. K., Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161:120–131, 2015. https://doi.org/10.1016/j.neucom.2015.02.057.

    Article  Google Scholar 

  15. Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw, J. R., BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Trans Biomed Eng 51:1034–1043, 2004. https://doi.org/10.1109/TBME.2004.827072.

    Article  PubMed  Google Scholar 

  16. Fraschini, M., Hillebrand, A., Demuru, M., Didaci, L., and Marcialis, G. L., An EEG-Based Biometric System Using Eigenvector Centrality in Resting State Brain Networks. IEEE Signal Process Lett 22:666–670, 2015. https://doi.org/10.1109/LSP.2014.2367091.

    Article  Google Scholar 

  17. Lan Ma, Minett JW, Blu T, Wang WS-Y (2015) Resting State EEG-based biometrics for individual identification using convolutional neural networks. 2015 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE; p. 2848–51. doi:https://doi.org/10.1109/EMBC.2015.7318985.

  18. Crobe, A., Demuru, M., Didaci, L., Marcialis, G. L., and Fraschini, M., Minimum spanning tree and k -core decomposition as measure of subject-specific EEG traits. Biomed Phys Eng Express 2:017001, 2016. https://doi.org/10.1088/2057-1976/2/1/017001.

    Article  Google Scholar 

  19. Kaur B, Singh D (2017) Neuro signals: A future biomertic approach towards user identification. 2017 7th Int. Conf. Cloud Comput. Data Sci. Eng. - Conflu., IEEE; p. 112–7. doi:https://doi.org/10.1109/CONFLUENCE.2017.7943133.

  20. Fraschini M, Marcialis GL, Didaci L (2018) EEG-based personal identification : comparison of different functional connectivity metrics. Biorxiv. https://doi.org/10.1101/254557.

  21. Kumari, P., and Vaish, A., Brainwave based user identification system: A pilot study in robotics environment. Rob Auton Syst 65:15–23, 2015. https://doi.org/10.1016/j.robot.2014.11.015.

    Article  Google Scholar 

  22. Altahat S, Chetty G, Tran D, Ma W (2015) Analysing the Robust EEG Channel Set for Person Authentication. In: Arik S, Huang T, Lai WK, Liu Q, editors. vol. 9492, Cham: Springer International Publishing; p. 162–73. doi:https://doi.org/10.1007/978-3-319-26561-2_20

    Chapter  Google Scholar 

  23. Gui Q, Jin Z, Xu W (2014) Exploring EEG-based biometrics for user identification and authentication. 2014 IEEE Signal Process. Med. Biol. Symp., IEEE; p. 1–6. doi:https://doi.org/10.1109/SPMB.2014.7002950

  24. Teplan, M., Fundamentals of EEG measurement. Meas Sci Rev 2:1–11, 2002.

    Google Scholar 

  25. Felzer, T., On the possibility of developing a brain-computer interface (bci). Tech Univ Darmstadt 39:999–1000, 2001.

    Google Scholar 

  26. Niedermeyer E, da Silva FHL (2005) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins

  27. Gabani HB, Paunwala CN (2018) ApEn-Based Epileptic EEG Classification Using Support Vector Machine, p. 75–85. doi:https://doi.org/10.1007/978-3-319-73712-6_8.

    Google Scholar 

  28. Moon, S., Bawane, N., and Hazare, P., Selection of optimum features for neural network using genetic algorithm in classification of brain computer interface data. Int J Adv Res Comput Commun Eng 4.7:426–428, 2015. https://doi.org/10.17148/IJARCCE.2015.4798.

    Article  Google Scholar 

  29. Albasri A (2018) EEG dataset of Fusion relaxation and concentration moods. Mendeley Data. doi:https://doi.org/10.17632/8c26dn6c7w.1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardin Abdali-Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albasri, A., Abdali-Mohammadi, F. & Fathi, A. EEG electrode selection for person identification thru a genetic-algorithm method. J Med Syst 43, 297 (2019). https://doi.org/10.1007/s10916-019-1364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1364-8

Keywords

Navigation