Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Asymptotic-Preserving Neural Networks for Multiscale Time-Dependent Linear Transport Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we develop a neural network for the numerical simulation of time-dependent linear transport equations with diffusive scaling and uncertainties. The goal of the network is to resolve the computational challenges of curse-of-dimensionality and multiple scales of the problem. We first show that a standard Physics-Informed Neural Network (PINN) fails to capture the multiscale nature of the problem, hence justifies the need to use Asymptotic-Preserving Neural Networks (APNNs). We show that not all classical AP formulations are directly fit for the neural network approach. We construct a micro-macro decomposition based neural network, and also build in a mass conservation mechanism into the loss function, in order to capture the dynamic and multiscale nature of the solutions. Numerical examples are used to demonstrate the effectiveness of this APNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

None.

Notes

  1. BAAI.2020. Suggested Notation for Machine Learning. https://github.com/mazhengcn/suggested-notation-for-machine-learning.

References

  1. Cercignani, C.: The boltzmann equation. In: The Boltzmann Equation and its Applications, pp. 40–103. Springer (1988)

  2. Jin, S., Pareschi, L.: Uncertainty Quantification for Hyperbolic and Kinetic Equations, vol. 14. Springer, Cham (2018)

    MATH  Google Scholar 

  3. Hu, J., Jin, S.: A stochastic Galerkin method for the Boltzmann equation with uncertainty. J. Comput. Phys. 315, 150–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jin, S., Liu, J.-G., Ma, Z.: Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition-based asymptotic-preserving method. Res. Math. Sci. 4, 15–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Poëtte, G.: A GPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation. J. Comput. Phys. 385, 135–162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Poëtte, G.: Numerical analysis of the Monte-Carlo noise for the resolution of the deterministic and uncertain linear Boltzmann equation (comparison of non-intrusive gpc and mc-gpc). J. Comput. Theor. Trans. 385, 135–162 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Weinan, E.: Principles of Multiscale Modeling. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  8. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Elsevier, London (2000)

    MATH  Google Scholar 

  9. Jin, S.: Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M &MKT), Porto Ercole (Grosseto, Italy), pp. 177–216 (2010)

  10. Degond, P., Deluzet, F.: Asymptotic-preserving methods and multiscale models for plasma physics. J. Comput. Phys. 336, 429–457 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, J., Jin, S., Li, Q.: Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations. In Handbook of Numerical Analysis, vol 18, pp. 103–129. Elsevier (2017)

  12. Golse, F., Jin, S., Levermore, C.D.: The convergence of numerical transfer schemes in diffusive regimes i: discrete-ordinate method. SIAM J. Numer. Anal. 36(5), 1333–1369 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pareschi, L., Caflisch, R.E.: An implicit Monte Carlo method for rarefied gas dynamics: I. The space homogeneous case. J. Comput. Phys. 154(1), 90–116 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pareschi, L., Russo, Giovanni: Time relaxed Monte Carlo methods for the Boltzmann equation. SIAM J. Sci. Comput. 23(4), 1253–1273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weinan, E., Yu, B.: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3(3), 218–229 (2021)

    Article  Google Scholar 

  19. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895 (2020)

  20. Beck, C., Hutzenthaler, M., Jentzen, A., Kuckuck, B.: An overview on deep learning-based approximation methods for partial differential equations. arXiv preprint arXiv:2012.12348 (2020)

  21. Liao, Y., Ming, P.: Deep Nitsche method: deep Ritz method with essential boundary conditions. arXiv preprint arXiv:1912.01309 (2019)

  22. Sirignano, J., Spiliopoulos, Konstantinos: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys. p. 109409 (2020)

  24. Cai, Z., Chen, J., Liu, M.: Least-squares Relu neural network (ISNN) method for linear advection-reaction equation. J. Comput. Phys. p 110514 (2021)

  25. Lyu, L., Zhang, Z., Chen, M., Chen, J.: MIM: a deep mixed residual method for solving high-order partial differential equations. arXiv preprint arXiv:2006.04146 (2020)

  26. Hwang, H.J., Jang, J.W., Jo, H., Lee, J.Y.: Trend to equilibrium for the kinetic Fokker–Planck equation via the neural network approach. J. Comput. Phys. 419, 109665 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Z., Liu, L., Mu, L.: Solving the linear transport equation by a deep neural network approach. arXiv preprint arXiv:2102.09157 (2021)

  28. Li, L., Yang, C.: Asymptotic preserving scheme for anisotropic elliptic equations with deep neural network. arXiv preprint arXiv:2104.05337 (2021)

  29. Delgadillo, R. A., Hu, J., Yang, H.: Multiscale and nonlocal learning for pdes using densely connected rnns. arXiv preprint arXiv:2109.01790 (2021)

  30. Lou, Q., Meng, X., Karniadakis, G.E.: Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation. J. Comput. Phys. 447, 110676 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yulong, L., Wang, L., Wuzhe, Xu.: Solving multiscale steady radiative transfer equation using neural networks with uniform stability. Res. Math. Sci. 9(3), 1–29 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., Liao, Qianli: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Int. J. Autom. Comput. 14(5), 503–519 (2017)

    Article  Google Scholar 

  33. Grohs, P., Hornung, F., Jentzen, A., Von Wurstemberger, P.: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of black-scholes partial differential equations. arXiv preprint arXiv:1809.02362 (2018)

  34. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tartakovsky, A.M., Ortiz Marrero, C., Perdikaris, Paris, Tartakovsky, G.D., Barajas-Solano, D.: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour. Res. 56(5):e2019WR026731 (2020)

  36. He, Q., Barajas-Solano, D., Tartakovsky, G., Tartakovsky, Alexandre M.: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv. Water Resour. 141, 103610 (2020)

    Article  Google Scholar 

  37. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., Ma, Z.: Frequency principle: Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523 (2019)

  39. Chandrasekhar, S.: Radiative Transfer. Courier Corporation (2013)

  40. Ryzhik, L., Papanicolaou, G., Keller, J. B.: Transport equations for elastic and other waves in random media. Wave Motion, 24(4):327–370 (1996)

  41. Bardos, C., Santos, R., Sentis, Rémi.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284(2), 617–649 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jin, S., Pareschi, L., Toscani, Giuseppe: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38(3), 913–936 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lemou, M., Mieussens, Luc: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR, (2015)

  45. Han, Jiequn, Jianfeng, Lu., Zhou, Mo.: Solving high-dimensional eigenvalue problems using deep neural networks: A diffusion monte carlo like approach. J. Comput. Phys. 423, 109792 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lyu, Liyao, Keke, Wu., Rui, Du., Chen, Jingrun: Enforcing exact boundary and initial conditions in the deep mixed residual method. CSIAM Transactions on Applied Mathematics 2(4), 748–775 (2021)

    Article  MathSciNet  Google Scholar 

  47. Jin, Shi, Xiu, Dongbin, Zhu, Xueyu: Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings. J. Comput. Phys. 289, 35–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Key R &D Program of China Project No. 2020YFA0712000 and Shanghai Municipal of Science and Technology Major Project No. 2021SHZDZX0102. Shi Jin is also supported by NSFC Grant No. 11871297. Zheng Ma is also supported by NSFC Grant No. 12031013 and partially supported by Institute of Modern Analysis—A Shanghai Frontier Research Center.

Funding

The work is supported by the National Key R &D Program of China Project No. 2020YFA0712000 and Shanghai Municipal of Science and Technology Major Project No. 2021SHZDZX0102. Shi Jin is also supported by NSFC grant No. 11871297. Zheng Ma is also supported by NSFC Grant No.12031013 and partially supported by Institute of Modern Analysis – A Shanghai Frontier Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Wu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Ma, Z. & Wu, K. Asymptotic-Preserving Neural Networks for Multiscale Time-Dependent Linear Transport Equations. J Sci Comput 94, 57 (2023). https://doi.org/10.1007/s10915-023-02100-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02100-0

Navigation