Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hybrid High-Order Methods for the Elliptic Obstacle Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Hybrid High-Order methods are introduced and analyzed for the elliptic obstacle problem in two and three space dimensions. The methods are formulated in terms of face unknowns which are polynomials of degree \(k=0\) or \(k=1\) and in terms of cell unknowns which are polynomials of degree \(l=0\). The discrete obstacle constraints are enforced on the cell unknowns. Higher polynomial degrees are not considered owing to the modest regularity of the exact solution. A priori error estimates of optimal order, that is, up to the expected regularity of the exact solution, are shown. Specifically, for \(k=1\), the method employs a local quadratic reconstruction operator and achieves an energy-error estimate of order \(h^{\frac{3}{2}-\epsilon }\), \(\epsilon >0\). To our knowledge, this result fills a gap in the literature for the quadratic approximation of the three-dimensional obstacle problem. Numerical experiments in two and three space dimensions illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbas, M., Ern, A., Pignet, N.: Hybrid High-Order methods for finite deformations of hyperelastic materials. Comput. Mech. 62(4), 909–928 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Abbas, M., Ern, A., Pignet, N.: A Hybrid High-Order method for incremental associative plasticity with small deformations. Comput. Methods Appl. Mech. Eng. 346, 891–912 (2019)

    MathSciNet  Google Scholar 

  3. Antonietti, P.F., Beirão da Veiga, L., Verani, M.: A mimetic discretization of elliptic obstacle problems. Math. Comput. 82(283), 1379–1400 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. (M2AN) 50(3), 879–904 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM Math. Model. Numer. Anal. 48(2), 553–581 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Botti, M., Di Pietro, D.A., Sochala, P.: A Hybrid High-Order method for nonlinear elasticity. SIAM J. Numer. Anal. 55(6), 2687–2717 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H.: Seuil de régularité pour certains problèmes unilatéraux. C. R. Acad. Sci. Paris Sér. A-B 273, A35–A37 (1971)

    MATH  Google Scholar 

  8. Brezzi, F., Hager, W.W., Raviart, P.-A.: Error estimates for the finite element solution of variational inequalities. Numer. Math. 28(4), 431–443 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196(37–40), 3682–3692 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Browder, F.: On the unification of the calculus of variations and the theory of monotone non linear operators in Banach spaces. Proc. Natl. Acad. Sci. U. S. A. 56, 1080–1086 (1966)

    Google Scholar 

  12. Burman, E., Ern, A.: An unfitted Hybrid High-Order method for elliptic interface problems. SIAM J. Numer. Anal. 56(3), 1525–1546 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Carstensen, C., Köhler, K.: Nonconforming FEM for the obstacle problem. IMA J. Numer. Anal. 37(1), 64–93 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Cascavita, K., Chouly, F., Ern, A.: Hybrid High-Order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions. IMA J. Numer. Anal. (2019) https://hal.archives-ouvertes.fr/hal-02016378. (To appear)

  15. Cicuttin, M., Di Pietro, D.A., Ern, A.: Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J. Comput. Appl. Math. 344, 852–874 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Di Pietro, D.A., Droniou, J.: A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Volume 69 of Mathématiques and Applications (Berlin) (Mathematiques and Applications). Springer, Heidelberg (2012)

    Google Scholar 

  20. Di Pietro, D.A., Ern, A.: A Hybrid High-Order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A., Krell, S.: A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection–diffusion–reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)

    MathSciNet  Google Scholar 

  25. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., Manzini, G.: 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds.) Finite Volumes for Complex Applications VI Problems and Perspectives, pp. 895–930. Springer, Berlin (2011). ISBN 978-3-642-20671-9

    MATH  Google Scholar 

  28. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    MathSciNet  MATH  Google Scholar 

  29. Friedman, A.: Variational Principles and Free-Boundary Problems. Pure and Applied Mathematics. Wiley, New York (1982)

    Google Scholar 

  30. Gaddam, S., Gudi, T.: Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem. Comput. Methods Appl. Math. 18(2), 223–236 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Scientific Computation. Springer, Berlin (2008). Reprint of the 1984 original

  32. Gustafsson, T., Stenberg, R., Videman, J.: Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55(6), 2718–2744 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Hintermüller, M., Ito, K., Kunisch, K.: The primal–dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). Reprint of the 1980 original

  35. Kuznetsov, Y., Lipnikov, K., Shashkov, M.: The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8(4), 301–324 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamb. 36, 9–15. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday (1971)

  37. Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95(1), 163–195 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics, Volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam. Notas de Matemática, 114 (1987)

  39. Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Les presses de l’Université de Montréal, Montréal (1966)

    MATH  Google Scholar 

  40. Wang, F., Han, W., Cheng, X.-L.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48(2), 708–733 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Wang, L.-H.: On the quadratic finite element approximation to the obstacle problem. Numer. Math. 92(4), 771–778 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Wang, L.-H.: On the error estimate of nonconforming finite element approximation to the obstacle problem. J. Comput. Math. 21(4), 481–490 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirupathi Gudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was carried over while the third author visited INRIA through the Invited Professorship program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicuttin, M., Ern, A. & Gudi, T. Hybrid High-Order Methods for the Elliptic Obstacle Problem. J Sci Comput 83, 8 (2020). https://doi.org/10.1007/s10915-020-01195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01195-z

Keywords

Mathematics Subject Classification

Navigation