Abstract
Hybrid High-Order methods are introduced and analyzed for the elliptic obstacle problem in two and three space dimensions. The methods are formulated in terms of face unknowns which are polynomials of degree \(k=0\) or \(k=1\) and in terms of cell unknowns which are polynomials of degree \(l=0\). The discrete obstacle constraints are enforced on the cell unknowns. Higher polynomial degrees are not considered owing to the modest regularity of the exact solution. A priori error estimates of optimal order, that is, up to the expected regularity of the exact solution, are shown. Specifically, for \(k=1\), the method employs a local quadratic reconstruction operator and achieves an energy-error estimate of order \(h^{\frac{3}{2}-\epsilon }\), \(\epsilon >0\). To our knowledge, this result fills a gap in the literature for the quadratic approximation of the three-dimensional obstacle problem. Numerical experiments in two and three space dimensions illustrate the theoretical results.
Similar content being viewed by others
References
Abbas, M., Ern, A., Pignet, N.: Hybrid High-Order methods for finite deformations of hyperelastic materials. Comput. Mech. 62(4), 909–928 (2018)
Abbas, M., Ern, A., Pignet, N.: A Hybrid High-Order method for incremental associative plasticity with small deformations. Comput. Methods Appl. Mech. Eng. 346, 891–912 (2019)
Antonietti, P.F., Beirão da Veiga, L., Verani, M.: A mimetic discretization of elliptic obstacle problems. Math. Comput. 82(283), 1379–1400 (2013)
Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. (M2AN) 50(3), 879–904 (2016)
Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM Math. Model. Numer. Anal. 48(2), 553–581 (2014)
Botti, M., Di Pietro, D.A., Sochala, P.: A Hybrid High-Order method for nonlinear elasticity. SIAM J. Numer. Anal. 55(6), 2687–2717 (2017)
Brezis, H.: Seuil de régularité pour certains problèmes unilatéraux. C. R. Acad. Sci. Paris Sér. A-B 273, A35–A37 (1971)
Brezzi, F., Hager, W.W., Raviart, P.-A.: Error estimates for the finite element solution of variational inequalities. Numer. Math. 28(4), 431–443 (1977)
Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)
Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196(37–40), 3682–3692 (2007)
Browder, F.: On the unification of the calculus of variations and the theory of monotone non linear operators in Banach spaces. Proc. Natl. Acad. Sci. U. S. A. 56, 1080–1086 (1966)
Burman, E., Ern, A.: An unfitted Hybrid High-Order method for elliptic interface problems. SIAM J. Numer. Anal. 56(3), 1525–1546 (2018)
Carstensen, C., Köhler, K.: Nonconforming FEM for the obstacle problem. IMA J. Numer. Anal. 37(1), 64–93 (2017)
Cascavita, K., Chouly, F., Ern, A.: Hybrid High-Order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions. IMA J. Numer. Anal. (2019) https://hal.archives-ouvertes.fr/hal-02016378. (To appear)
Cicuttin, M., Di Pietro, D.A., Ern, A.: Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J. Comput. Appl. Math. 344, 852–874 (2018)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)
Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)
Di Pietro, D.A., Droniou, J.: A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017)
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Volume 69 of Mathématiques and Applications (Berlin) (Mathematiques and Applications). Springer, Heidelberg (2012)
Di Pietro, D.A., Ern, A.: A Hybrid High-Order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)
Di Pietro, D.A., Krell, S.: A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018)
Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)
Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection–diffusion–reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015)
Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)
Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)
Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)
Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., Manzini, G.: 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds.) Finite Volumes for Complex Applications VI Problems and Perspectives, pp. 895–930. Springer, Berlin (2011). ISBN 978-3-642-20671-9
Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)
Friedman, A.: Variational Principles and Free-Boundary Problems. Pure and Applied Mathematics. Wiley, New York (1982)
Gaddam, S., Gudi, T.: Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem. Comput. Methods Appl. Math. 18(2), 223–236 (2018)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Scientific Computation. Springer, Berlin (2008). Reprint of the 1984 original
Gustafsson, T., Stenberg, R., Videman, J.: Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55(6), 2718–2744 (2017)
Hintermüller, M., Ito, K., Kunisch, K.: The primal–dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). Reprint of the 1980 original
Kuznetsov, Y., Lipnikov, K., Shashkov, M.: The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8(4), 301–324 (2004)
Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamb. 36, 9–15. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday (1971)
Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95(1), 163–195 (2003)
Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics, Volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam. Notas de Matemática, 114 (1987)
Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Les presses de l’Université de Montréal, Montréal (1966)
Wang, F., Han, W., Cheng, X.-L.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48(2), 708–733 (2010)
Wang, L.-H.: On the quadratic finite element approximation to the obstacle problem. Numer. Math. 92(4), 771–778 (2002)
Wang, L.-H.: On the error estimate of nonconforming finite element approximation to the obstacle problem. J. Comput. Math. 21(4), 481–490 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was carried over while the third author visited INRIA through the Invited Professorship program.
Rights and permissions
About this article
Cite this article
Cicuttin, M., Ern, A. & Gudi, T. Hybrid High-Order Methods for the Elliptic Obstacle Problem. J Sci Comput 83, 8 (2020). https://doi.org/10.1007/s10915-020-01195-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01195-z
Keywords
- Hybrid High-Order method
- Discontinuous-skeletal method
- Obstacle problem
- Error estimates
- Variational inequalities