Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Approximation algorithms for capacitated partial inverse maximum spanning tree problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Given an edge weighted graph, and an acyclic edge set, the goal of the partial inverse maximum spanning tree problem is to modify the weight function as little as possible such that there exists a maximum spanning tree with respect to the new weight function containing the given edge set. In this paper, we consider this problem with capacitated constraint under the \(l_{p}\)-norm, where p is an integer and \(p \in [1,+\,\infty )\). Firstly, we characterize the feasible solutions of this problem. Then, we present a \(\root p \of {k}\)-approximation algorithm for this problem when the weight function can only be decreased, where k is the number of edges in the given edge set. Finally, when the weight function can be either decreased and increased, we propose an approximation algorithm for the general case and analyse its approximation ratio. Moreover, we remark that these algorithms can be generalized under the weighted \(l_{p}\)-norm and the weighted sum Hamming distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B.: A faster algorithm for the inverse spanning tree problem. J. Algorithms 34, 177–193 (2000)

    Article  MathSciNet  Google Scholar 

  2. Ben-Ayed, O., Blair, C.E.: Computational difficulties of bilevel linear programming. Oper. Res. 38(3), 556–560 (1990)

    Article  MathSciNet  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

    Book  Google Scholar 

  4. Cai, M.-C., Duin, C.W., Yang, X., Zhang, J.: The partial inverse minimum spanning tree problem when weight increasing is forbidden. Eur. J. Oper. Res. 188, 348–353 (2008)

    Article  Google Scholar 

  5. Dell’Amico, M., Maffioli, F., Malucelli, F.: The base-matroid and inverse combinatorial optimization problems. Discrete Appl. Math. 128, 337–353 (2003)

    Article  MathSciNet  Google Scholar 

  6. Gassner, E.: The partial inverse minimum cut problem with \(L_1\)-norm is strongly NP-hard. RAIRO Oper. Res. 44, 241–249 (2010)

    Article  MathSciNet  Google Scholar 

  7. Guan, X., He, X., Pardalos, P.M., Zhang, B.: Inverse max + sum spanning tree problem under Hamming distance by modifying the sum-cost vector. J. Glob. Optim. 69(4), 911–925 (2017)

    Article  Google Scholar 

  8. Guan, X., Pardalos, P.M., Zhang, B.: Inverse max + sum spanning tree problem under weighted \(l_1\) norm by modifying the sum-cost vector. Optim. Lett. 12(5), 1065–1077 (2018)

    Article  MathSciNet  Google Scholar 

  9. Guan, X., Pardalos, P.M., Zuo, X.: Inverse Max + Sum spanning tree problem by modifying the sum-cost vector under weighted \(l_\infty \) norm. J. Glob. Optim. 61(1), 165–182 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13, 1194–1217 (1992)

    Article  MathSciNet  Google Scholar 

  11. He, Y., Zhang, B., Yao, E.: Weighted inverse minimum spanning tree problems under hamming distance. J. Comb. Optim. 9, 91–100 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hochbaum, D.S.: Efficient algorithms for the inverse spanning-tree problem. Oper. Res. 51(5), 785–797 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hochbaum, D.S., Queyranne, M.: Minimizing a convex cost closure set. SIAM J. Discrete Math. 16(2), 192–207 (2003)

    Article  MathSciNet  Google Scholar 

  14. Lai, T., Orlin, J.: The Complexity of Preprocessing, Research Report of Sloan School of Management, MIT (2003)

  15. Li, S., Zhang, Z., Lai, H.-J.: Algorithms for constraint partial inverse matroid problem with weight increase forbidden. Theor. Comput. Sci. 640, 119–124 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Shu, X., Huang, H., Bai, J.: Capacitated partial inverse maximum spanning tree under the weighted Hamming distance. J. Comb. Optim. 38(4), 1005–1018 (2019)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Yang, R., Zhang, Z., Zhang, H.: Capacitated partial inverse maximum spanning tree under the weighted \(l_\infty \)-norm, Submitted

  18. Li, X., Zhang, Z., Du, D.-Z.: Partial inverse maximum spanning tree in which weight can only be decreased under \(l_p\)-norm. J. Glob. Optim. 30, 677–685 (2018)

    Article  Google Scholar 

  19. Liu, L., Wang, Q.: Constrained inverse min-max spanning tree problems under the weighted Hamming distance. J. Glob. Optim. 43, 83–95 (2009)

    Article  MathSciNet  Google Scholar 

  20. Liu, L., Yao, E.: Inverse min–max spanning tree problem under the weighted sum-type Hamming distance. Theor. Comput. Sci. 196, 28–34 (2008)

    Article  MathSciNet  Google Scholar 

  21. Sokkalingam, P.T., Ahuja, R.K., Orlin, J.B.: Solving inverse spanning tree problems through network flow techniques. Oper. Res. 47, 291–298 (1999)

    Article  MathSciNet  Google Scholar 

  22. Yang, X.: Complexity of partial inverse assignment problem and partial inverse cut problem. RAIRO Oper. Res. 35, 117–126 (2001)

    Article  MathSciNet  Google Scholar 

  23. Yang, X., Zhang, J.: Partial inverse assignment problem under \(l_1\) norm. Oper. Res. Lett. 35, 23–28 (2007)

    Article  MathSciNet  Google Scholar 

  24. Yang, X., Zhang, J.: Inverse sorting problem by minimizing the total weighted number of changers and partial inverse sorting problem. Comput. Optim. Appl. 36(1), 55–66 (2007)

    Article  MathSciNet  Google Scholar 

  25. Zhang, B., Zhang, J., He, Y.: Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance. J. Glob. Optim. 34, 467–474 (2006)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Xu, S., Ma, Z.: An algorithm for inverse minimum spanning tree problem. Optim. Methods Softw. 8(1), 69–84 (1997)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Z., Li, S., Lai, H.-J., Du, D.-Z.: Algorithms for the partial inverse matroid problem in which weights can only be increased. J. Glob. Optim. 65(4), 801–811 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work is supported in part by National Numerical Windtunnel Project (No. NNW2019ZT5-B16), NSFC (11571155, 11871256, 11771013, 11531011, 61751303), the Fundamental Research Funds for the Central Universities (No. lzujbky-2017-163), and ZJNSFC (LD19A010001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Zhang or Ding-Zhu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Z., Yang, R. et al. Approximation algorithms for capacitated partial inverse maximum spanning tree problem. J Glob Optim 77, 319–340 (2020). https://doi.org/10.1007/s10898-019-00852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00852-4

Keywords

Navigation