Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bounds for the traveling salesman paths of two-dimensional modular lattices

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We present tight upper and lower bounds for the traveling salesman path through the points of two-dimensional modular lattices. We use these results to bound the traveling salesman path of two-dimensional Kronecker point sets. Our results rely on earlier work on shortest vectors in lattices as well as on the strong convergence of Jacobi–Perron type algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arlotto A, Steele JM (2013) Beardwood–Halton–Hammersley theorem for stationary ergodic sequences: a counterexample. arXiv:1307.0221v4 [math.PR]

  • Beardwood J, Halton J, Hammersley J (1959) The shortest path through many points. Math Proc Camb Philos Soc 55:299–327

    Article  MathSciNet  MATH  Google Scholar 

  • Berthé V (2011) Multidimensional Euclidean algorithms, numeration and substitutions. Integers, 11B, Paper A02

  • Eisenbrand F (2001) Short vectors of planar lattices via continued fractions. Inform Process Lett 79:121–126

    Article  MathSciNet  MATH  Google Scholar 

  • Gao J, Steele JM (1994) General spacefilling curve heuristics and limit theory for the traveling salesman problem. J Complex 10:230–245

    Article  MathSciNet  MATH  Google Scholar 

  • Karloff H (1989) How long can a Euclidean traveling salesman tour be? SIAM J Discret Math 2(1):91–99

    Article  MathSciNet  MATH  Google Scholar 

  • Kuipers L, Niederreiter H (1974) Uniform distribution of sequences. Wiley, New York

    MATH  Google Scholar 

  • Meester R (1999) A simple proof of the exponential convergence of the modified Jacobi–Perron algorithm. Ergodic Theory Dyn Sys 19:1077–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter H (1992) Random number generation and Quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Pausinger F, Steinerberger S (2016) On the discrepancy of jittered sampling. J Complex 33:199–216

    Article  MathSciNet  MATH  Google Scholar 

  • Pausinger F, Topuzoğlu A (2014) Permutations of finite fields and uniform distribution modulo 1, algebraic curves and finite fields. In: Niederreiter H, Ostafe A, Panario D, Winterhof A (eds) Radon series on applied and computational mathematics, vol 16, pp 145–160

  • Perron O (1907) Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math Ann 64:1–76

    Article  MathSciNet  MATH  Google Scholar 

  • Perron O (1921) Über diophantische approximationen. Math Ann 83:77–84

    Article  MathSciNet  MATH  Google Scholar 

  • Platzman LK, Bartholdi J (1989) Spacefilling curves and the planar traveling salesman problem. J Assoc Comput Mach 36:719–737

    Article  MathSciNet  MATH  Google Scholar 

  • Raju N (1976) Periodic Jacobi–Perron algorithms and fundamental units. Pac J Math 64:241–251

    Article  MathSciNet  MATH  Google Scholar 

  • Rote G (1997) Finding a shortest vector in a two-dimensional lattice modulo \(m\). Theor Comput Sci 172:303–308

    Article  MathSciNet  MATH  Google Scholar 

  • Schratzberger B (1998) The exponent of convergence of Brun’s algorithm in two dimensions. Sitzungsber Abt II(207):229–238

    MathSciNet  MATH  Google Scholar 

  • Schweiger F (1996) The exponent of convergence for the 2-dimensional Jacobi–Perron algorithm. In: Nowak WG, Schoissengeier J (eds) Proceedings of the conference on analytic and elementary number theory, Vienna, pp 207–213

  • Schweiger F (2000) Multidimensional continued fractions. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Steele JM (1980) Shortest path through pseudorandom points in the \(d\)-cube. Proc Am Math Soc 80:130–134

    MathSciNet  MATH  Google Scholar 

  • Steinerberger S (2010) A new lower bound for the geometric traveling salesman problem in terms of discrepancy. Oper Res Lett 38:318–319

    Article  MathSciNet  MATH  Google Scholar 

  • Steinerberger S (2015) New bounds for the traveling salesman constant. Adv Appl Probab 47:27–36

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Stefan Steinerberger for bringing this research problem to my attention and for many interesting discussions. Furthermore, I would like to thank an anonymous referee for very constructive feedback and for simplifying my initial proof of Lemma 3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pausinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pausinger, F. Bounds for the traveling salesman paths of two-dimensional modular lattices. J Comb Optim 33, 1378–1394 (2017). https://doi.org/10.1007/s10878-016-0043-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0043-7

Keywords

Navigation