Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Laser Pose Estimation and Tracking Using Fuzzy Extended Information Filtering for an Autonomous Mobile Robot

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents methodologies and techniques for posture estimation and tracking of an autonomous mobile robot (AMR) using a laser scanner with at least three retro-reflectors. A three-point laser triangulation method is presented to find an initial posture of the robot and then a fuzzy extended information filtering (FEIF) method is used to improve the accuracy of the robot’s posture estimation. With the odometric information from the driving wheels, a FEIF-based posture tracking algorithm is proposed to continuously keep trace of the robot’s posture at slow speeds. Simulation and experimental results are conducted to show the efficacy and usefulness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abdelnour, G., Chand, S., Chiu, S., Kido, T.: On-line detection & correction of Kalman filter divergence by fuzzy logic. Proceeding of the American Control Conference, pp. 1835–1839 (1993)

  2. Angelov, P., Filev, D.: An approach to on-line identification of Takagi–Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B. 34(1), 484–498 (2004)

    Article  Google Scholar 

  3. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and Techniques. Wellesley, MA., AK Peters (1996)

    MATH  Google Scholar 

  4. Chang, C.F., Tsai, C.C., Hsu, J.C., Lin, S.C., Lin, C.C.: Laser self-localization for a mobile robot using retro-reflector landmarks. Proceedings of American Control Conference, Denver, Colorado USA, pp. 2471–2476 (2003)

  5. Decker, S., Gander, H., Vincze, M., Prenninger, J.P.: Dynamic measurement of position and orientation of robots. IEEE Trans. Instrum. Meas. 41(6), 897–901 (1992)

    Article  Google Scholar 

  6. Dubrawski, A., Siemiatkowska, B.: A method for tracking pose of a mobile robot equipped with a scanning laser range finder. Proceeding of the IEEE International Conference on Robotics and Automation, Belgium, pp. 2518–2523 (1998)

  7. Forsberg, J., Larsson U., Wernersson, Åke.: Mobile robot navigation using the range-weighted Hough transform. IEEE Robotics and Automation Magazine pp. 18–26 (1995)

  8. Jensfelt, P., Kristensen, S.: Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Trans. Robot. Autom. 17(5), 748–760 (2001)

    Article  Google Scholar 

  9. Kim, Y.H.: Localization of a mobile robot using a laser range finder in a hierarchical navigation system. IEEE Proceedings of Southeastcon, pp. 712–720 (1993)

  10. Kobayashi, K., Cheok, K.C., Watanabe, K., Munekata, F.: Accurate differential global positioning system via fuzzy logic Kalman filter sensor fusion technique. IEEE Trans. Ind. Electron. 45, (3), 510–518 (1998)

    Article  Google Scholar 

  11. McGillem, C.D., Rappaport, T.S.: Infra-red location system for navigation of autonomous vehicles. Proceedings of IEEE International Conference on Robotics and Automation, pp. 1236–1238 (1998)

  12. Mutambara, A.G.O.: ecentralized Estimation and Control for Multisensor Systems, CRC (1998)

  13. Nishizawa, T., Ohya, A., Yuta, S.: An implementation of on-board position estimation for a mobile robot. Proceeding of the IEEE International Conference on Robotics and Automation, pp. 395–400 (1995)

  14. Rupp, T., Levi, P.: Optimized Landmark Arrangement for Absolute Localization. – A Practical Approach. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, pp. 448–453 (2000)

  15. Sasiadek, J.Z., Wang, Q.: Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle. Proceeding of the IEEE Conference on Robotics and Automation, Detroit, Michigan, pp. 2970–2975 (1999)

  16. Sasiadek, J.Z, Wang, Q., Zeremba, M.B.: Fuzzy adaptive Kalman filtering for INS/GPS data fusion. Proceedings of the 15th IEEE International Symposium on Intelligent Control, Rio, Patras, Greece, pp. 181–186 (2000)

  17. Tsai, C.C., Hsu, J.C., Chang, C.F., Lin, S.C., Lin, C.C.: Laser self-localization for a mobile robot using retro-reflector landmarks. Proceeding of International Conference on Automation Technology, Taiwan, R. O. C., pp. 521–526 (2003)

  18. Tsai, C.C., Lin, H.H., Hsu, J.C.: Fuzzy Adaptive extended information filtering. Int. J. Fuzzy Syst. 7(1), 31–39 (2005)

    Google Scholar 

  19. Tsumura, T., Okubo, H., Komatsu, N.: A 3-D position and attitude measurement system using laser scanners and corner cubes. Proceeding of IEEE/RSJ International Conference on Intelligent Robots and System, Japan, pp. 604–609 (1993)

  20. Jensfelt, P., Christensen, H.I.: Pose tracking using laser scanning and minimalistic environmental models. IEEE Trans. Robot. Autom. 17(2), 138–147 (2001)

    Article  Google Scholar 

  21. Toshihiro, N., Akihisa, O., Shin’ichi, Y.: An implementation of on-board position estimation for a mobile robot—EKF-based odometry and laser reflector landmarks detection. Proceedings of IEEE International Conference on Robotics and Automation, pp. 395–400 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chih Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HH., Tsai, CC. Laser Pose Estimation and Tracking Using Fuzzy Extended Information Filtering for an Autonomous Mobile Robot. J Intell Robot Syst 53, 119–143 (2008). https://doi.org/10.1007/s10846-008-9234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9234-5

Keywords

Navigation