Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Open loop optogenetic control of simulated cortical epileptiform activity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present a model for the use of open loop optogenetic control to inhibit epileptiform activity in a meso scale model of the human cortex. The meso scale cortical model first developed by Liley et al. (2001) is extended to two dimensions and the nature of the seizure waves is studied. We adapt to the meso scale a 4 state functional model of Channelrhodopsin-2 (ChR2) ion channels. The effects of pulsed and constant illumination on the conductance of these ion channels is presented. The inhibitory cell population is targeted for the application of open loop control. Seizure waves are successfully suppressed and the inherent properties of the optogenetic channels ensures charge balance in the cortex, protecting it from damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The average human cortex has dimensions of \(500 \times 500 \ \text {mm}^{2}\) if it were laid open like a sheet. However, the spiral seizure waves have a radius of curvature that is too large to be appreciated within a domain of the size of an average human cortex, and because cortical dynamics is scale-free, we have used a larger cortical domain to illustrate them.

  2. The fourth order solver is more accurate in producing results that match experimental observations of conductance, but the first order method takes less computation time to solve the equations. Because the optogenetic channels function at a smaller time scale, and because we are only interested in time scales of the cortical model, the use of the simpler first order method is justified.

References

  • Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.

    Article  CAS  Google Scholar 

  • Cardin, J., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C. (2010). Targeted optogenetic stimulation and recordings of neurons in vivo using cell type specific expression of channelrhodopsin-2. Nature Protocols, 5(2), 247–254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crick, F. (1999). The impact of molecular biology on neuroscience. Physical Transactions of the Royal Society B: Biological Sciences, 354, 2021–2025.

    Article  CAS  Google Scholar 

  • Deisseroth, K. (2011). Optogenetics. Nature Methods, 8, 26–29.

    Article  CAS  PubMed  Google Scholar 

  • Gluckman, B., Nguyen, H., Weinstein, S., Schiff, S. (2001). Adaptive electric field control of epileptic seizures. Journal of Neuroscience, 21(2), 590–600.

    CAS  PubMed  Google Scholar 

  • Grossman, N., Nikolic, K., Toumazou, C., Degenaar, P. (2011). Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Transactions on Biomedical Engineering, 58(6), 1742–1751.

    Article  PubMed  Google Scholar 

  • Hegemann, P., Ehlenbeck, S., Gradmann, D. (2005). Multiple photocycles of channelrhodopsin. Biophysical Journal, 89, 3911–3918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer, M., Kirsch, H., Szeri, A.. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society Interface, 2, 113–127.

    Article  PubMed Central  Google Scholar 

  • Kramer, M., Szeri, A., Sleigh, J., Kirsch, H. (2007). Mechanisms of seizure propagation in a cortical model. Journal of Computational Neuroscience, 22(1), 63–80.

    Article  PubMed  Google Scholar 

  • Krook-Magnuson, E., Armstrong, C., Oijala, M., Soltesz, I. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications, 4(1376), 1–8.

    Google Scholar 

  • Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2001). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67–113.

    Article  Google Scholar 

  • Lopour, B.A., & Szeri, A.J. (2010). A model of feedback control for the charge-balanced suppression of epileptic seizures. Journal of Computational Neuroscience, 28, 375–387.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 100(24), 13,940–13,945.

    Article  CAS  Google Scholar 

  • Paz, T.P., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R. (2013). Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Neuroscience, 16, 64–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson, K., Schiff, S., Gluckman, B. (2005). Control of travelling waves in mammalian cortex. Physical Review Letters, 94(28), 103.

    Google Scholar 

  • Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W. (2007). Gap junctions mediate large-scale turing structures in a mean-field cortex driven by subcortical noise. Physical Review E, 76(11), 916.

    Google Scholar 

  • Tønnesen, J., Sørensen, A., Deisseroth, K., Lundberg, C., Kokaia, M. (2009). Optogenetic control of epileptiform activity. Proceedings of the National Academy of Sciences, USA, 106, 12,162–12,167.

    Article  Google Scholar 

  • Ursino, M., & LaCara, G.E. (2006). Travelling waves and EEG patterns during epileptic seizure: analysis with an integrateand-fire neural network. Journal of Theoretical Biology, 242, 171–187.

    Article  PubMed  Google Scholar 

  • Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., Deisseroth, K. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633–641.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the US National Science Foundation grant CMMI 1031811.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashanth Selvaraj or Andrew J. Szeri.

Additional information

Action Editor: Steven J. Schiff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvaraj, P., Sleigh, J.W., Freeman, W.J. et al. Open loop optogenetic control of simulated cortical epileptiform activity. J Comput Neurosci 36, 515–525 (2014). https://doi.org/10.1007/s10827-013-0484-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0484-2

Keywords

Navigation