Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the c-differential uniformity of certain maps over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We give some classes of power maps with low c-differential uniformity over finite fields of odd characteristic, for \(c=-1\). Moreover, we give a necessary and sufficient condition for a linearized polynomial to be a perfect c-nonlinear function and investigate conditions when perturbations of perfect c-nonlinear (or not) function via an arbitrary Boolean or p-ary function is perfect c-nonlinear. In the process, we obtain a class of polynomials that are perfect c-nonlinear for all \(c\ne 1\), in every characteristic. The affine, extended affine and CCZ-equivalence is also looked at, as it relates to c-differential uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoli D., Timpanella M.: On a generalization of planar functions. J. Algebra Comb. 52, 187–213 (2020).

    Article  MathSciNet  Google Scholar 

  2. Borisov N., Chew M., Johnson R., Wagner D.: Multiplicative differentials. In: Daemen J., Rijmen V. (eds.) Proceedings of Fast Software Encryption - FSE 2002. Lecture Notes in Comput. Sci. Springer, Berlin, Heidelberg, vol. 2365, pp. 17–33 (2002).

  3. Bourbaki N.: Elements of Mathematics, Algebra II (translated by P.M. Cohn and J. Howie). Springer, Berlin (1990).

  4. Budaghyan L., Carlet C., Leander G.: Constructing new APN functions from known ones. Finite Fields Appl. 15, 150–159 (2009).

    Article  MathSciNet  Google Scholar 

  5. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998).

    Article  MathSciNet  Google Scholar 

  6. Charpin P., Kyureghyan G.: On a class of permutation polynomials over \(\mathbb{F}_{2}^{n}\) In: Golomb S.W., Parker M.G., Pott A., Winterhof A. (eds.) Proceedings of Sequences and Their Applications - SETA 2008. Lecture Notes in Comput. Sci., Springer, Berlin, Heidelberg, vol. 5203, pp. 368–376 (2008).

  7. Charpin P., Kyureghyan G.: When does \(G(x)+\gamma Tr(H(x))\) permute \(\mathbb{F}_{p^n}\). Finite Fields Appl. 15(5), 615–632 (2009).

    Article  MathSciNet  Google Scholar 

  8. Coulter R.S., Matthews R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr. 10, 167–184 (1997).

    Article  MathSciNet  Google Scholar 

  9. Edel Y., Kyureghyan G., Pott A.: A new APN funciton which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006).

    Article  Google Scholar 

  10. Ellingsen P., Felke P., Riera C., Stănică P., Tkachenko A.: C-differentials, multiplicative uniformity and (almost) perfect \(c\)-nonlinearity. IEEE Trans. Inf. Theory 66(9), 5781–5789 (2020).

    Article  MathSciNet  Google Scholar 

  11. Mesnager S., Qu L.: On two-to-one mappings over finite fields. IEEE Trans. Inf. Theory 65(12), 7884–7895 (2019).

    Article  MathSciNet  Google Scholar 

  12. Nöbauer W.: Über eine Klasse von Permutationspolynomen und die dadurch dargestellten Gruppen. J. Reine Angew. Math. 231, 215–219 (1968).

    MATH  Google Scholar 

  13. Riera, C., Stănică, P.: Some c-(almost) perfect nonlinear functions, arXiv:2004.02245.

  14. Xu X., Li C., Zeng X., Helleseth T.: Constructions of complete permutation polynomials. Des. Codes Cryptogr. 86, 2869–2892 (2018).

    Article  MathSciNet  Google Scholar 

  15. Yan H., Mesnager S., Zhou Z.: Power functions over finite fields with low \(c\)-differential uniformity, arXiv:2003.13019.

Download references

Acknowledgements

The authors would like to express their sincere appreciation for the reviewers’ careful reading, beneficial comments and suggestions, and to the editors for the prompt handling of our paper. The research of Sartaj Ul Hasan is partially supported by Start-up Research Grant SRG/2019/000295 from the Science and Engineering Research Board, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelimon  Stănică.

Additional information

Communicated by G. Kyureghyan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S.U., Pal, M., Riera, C. et al. On the c-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr. 89, 221–239 (2021). https://doi.org/10.1007/s10623-020-00812-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00812-0

Keywords

Mathematics Subject Classification

Navigation