Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2p m

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article, new classes of generalized cyclotomic binary sequences with period 2p m are proposed. We determine the linear complexity and autocorrelation of these sequences. The results show that the proposed generalized cyclotomic binary sequences have high linear complexity, but do not have desirable autocorrelation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Burton D.M.: Elementary Number Theory, 4th edn. McGraw-Hill International Editions, New York (1998)

    MATH  Google Scholar 

  2. Cai Y., Ding C.: Binary sequences with optimal autocorrelation. Theor. Comput. Sci. 410, 2316–2322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cusick T., Ding C., Renvall A.: Stream ciphers and number theory. N.-Holl. Math. Libr. 55, 198–212 (1998)

    MathSciNet  Google Scholar 

  4. Ding C.: Linear complexity of some generalized cyclotomic sequences. Int. J. Algebra Comput. 8(4), 431–442 (1998)

    Article  MATH  Google Scholar 

  5. Ding C., Helleseth T.: Generalized cyclotomy and its applications. Finite Fields Appl. 4, 467–474 (1999)

    Google Scholar 

  6. Ding C., Hellseth T., Shan W.: On the linear complexity of Legendre sequences. IEEE Trans. Inform. Theory 44, 1276–1278 (1998)

    Article  MathSciNet  Google Scholar 

  7. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communications, Cryptography and Radar Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  8. Kim Y.J., Jin S.Y., Song H.Y.: Linear complexity and autocorrelation of prime cube sequences. In: Boztas S., Lu H.-F. (eds.) AAECC 2007. LNCS, 4851, pp. 188–197. Springer, Heidelberg (2007).

  9. Kim Y.J., Song H.Y.: Linear complexity of prime n-square sequences. In: IEEE International Symposium on Information Theory, Toronto, Canada, pp. 2405–408 (2008).

  10. Massey J.L.: Shift register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15(1), 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nathanson M.B.: Elementary Methods in Number Theory. Springer, Berlin (2003) GTM 195

    Google Scholar 

  12. Vladimir E.: About computation of the linear complexity of generalized cyclotomic sequences with period p n+1. Des. Codes Cryptogr. 61(3), 251–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yan T., Sun R., Xiao G.: Autocorrelation and linear complexity of the new generalized cyclotomic sequences. IEICE Trans. Fundam. E90-A, 857–64 (2007).

  14. Yan T., Li S., Xiao G.: On the linear complexity of generalized cyclotomic sequences with the period pm. Appl. Math. Lett. 21, 187–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang J.W., Zhao C.A., Ma X.: Linear complexity of generalized cyclotomic binary sequences of length 2p m. AAECC 21, 93–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinhui Ke.

Additional information

Communicated by T. Helleseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, P., Zhang, J. & Zhang, S. On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2p m . Des. Codes Cryptogr. 67, 325–339 (2013). https://doi.org/10.1007/s10623-012-9610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9610-9

Keywords

Mathematics Subject Classification (2000)

Navigation