Abstract
In the binary projective spaces PG(n,2) k-caps are called large if k > 2n-1 and smallif k ≤ 2n-1. In this paper we propose new constructions producing infinite families of small binary complete caps.
Similar content being viewed by others
References
A.A. Bruen L. Haddad D.L. Wehlau (1998) ArticleTitleBinary codes and caps Journal of Combinatorial Designs. 6 IssueID4 275–284 Occurrence Handle10.1002/(SICI)1520-6610(1998)6:4<275::AID-JCD5>3.0.CO;2-C
A.A. Bruen D.L. Wehlau (1999) ArticleTitleLong binary linear codes and large caps in projective space Designs, Codes and Cryptography. 17 IssueID1 37–60
A.A. Bruen D.L. Wehlau (2001) ArticleTitleNew codes from Old; a new geometric construction Journal of Combinatorial Theory, Series A. 94 IssueID2 196–202
W.E. Clark J. Pedersen (1992) ArticleTitleSum-free sets in vector spaces over GF(2) Journal of Combinatorial Theory, Series A. 61 IssueID2 222–229
A.A. Davydov L.M. Tombak (1989) ArticleTitleQuasi-perfect linear binary codes with distance 4 and complete caps in projective geometry Problems of Information Transmission. 25 IssueID4 265–275
A.A. Davydov S. Marcugini F. Pambianco (2004) ArticleTitleComplete caps in projective spaces PG(n, q) Journal of Geometry. 80 23–30 Occurrence Handle10.1007/s00022-004-1778-3
G. Faina S. Marcugini A. Milani F. Pambianco (1998) ArticleTitleThe sizes k of the complete k-caps in PG(n, q), for small q and 3 ≤ n ≤ 5 Ars Combinatoria. 50 235–243
G. Faina F. Pambianco (1998) ArticleTitleOn the spectrum of the values k for which a complete k-cap in PG(n, q) exists Journal of Geometry. 62 IssueID1 84–98 Occurrence Handle10.1007/BF01237602
E.M. Gabidulin A.A. Davydov L.M. Tombak (1991) ArticleTitleCodes with covering radius 2 and other new covering codes IEEE Transactions on Information Theory. 37 IssueID1 219–224 Occurrence Handle10.1109/18.61146
J.W.P. Hirschfeld (1998) Projective Geometries over Finite Fields EditionNumber2 Clarendon Oxford
J.W.P. Hirschfeld L. Storme (2001) The packing problem in statistics, coding theory, and finite projective spaces: update 2001 A. Blokhuis J.W.P. Hirschfeld D. Jungnickel J.A. Thas (Eds) Developments in Mathematics, Vol. 3, Finite Geometries. Kluwer Academic Publishers Dordrecht 201–246
MacWilliams F.J., Sloane N.J.A. (1977). The Theory of Error-Correcting Codes, Part I. North-Holland, Amsterdam
T. Szönyi (1985) ArticleTitleSmall complete arcs in Galois planes Geometriae Dedicata. 18 161–172
D.L. Wehlau (2001) Complete caps in projective space which are disjoint from a codimension 2 subspace A. Blokhuis J.W.P. Hirschfeld D. Jungnickel J.A. Thas (Eds) Developments in Mathematics, Vol. 3, Finite Geometries. Kluwer Academic Publishers Dordrecht 347–361
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: J. W. P. Hirschfeld
AMS Classification: 51E21, 51E22, 94B05
Rights and permissions
About this article
Cite this article
Davydov, A.A., Faina, G. & Pambianco, F. Constructions of Small Complete Caps in Binary Projective Spaces. Des Codes Crypt 37, 61–80 (2005). https://doi.org/10.1007/s10623-004-3805-7
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-3805-7