Abstract
The solution of KKT systems is ubiquitous in optimization methods and often dominates the computation time, especially when large-scale problems are considered. Thus, the effective implementation of such methods is highly dependent on the availability of effective linear algebra algorithms and software, that are able, in turn, to take into account specific needs of optimization. In this paper we discuss the mutual impact of linear algebra and optimization, focusing on interior point methods and on the iterative solution of the KKT system. Three critical issues are addressed: preconditioning, termination control for the inner iterations, and inertia control.
Similar content being viewed by others
References
Axelsson, O.: Preconditioning of indefinite problems by regularization. SIAM J. Numer. Anal. 16(1), 58–69 (1979)
Axelsson, O., Neytcheva, M.: Preconditioning methods for linear systems arising in constrained optimization problems. Numer. Linear Algebra Appl. 10(1), 3–31 (2003)
Baryamureeba, V., Steihaug, T.: On the convergence of an inexact primal-dual interior point method for linear programming. Reports in Informatics No. 188, Department of Informatics, University of Bergen, Norway (2000)
Bellavia, S.: Inexact interior point method. J. Optim. Theory Appl. 96, 109–121 (1998)
Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)
Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103(2), 173–196 (2006)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28(2), 149–171 (2004)
Bergamaschi, L., Gondzio, J., Venturin, M., Zilli, G.: Inexact constraint preconditioners for linear systems arising in interior point methods. Comput. Optim. Appl. 36(2–3), 137–147 (2007)
Bunch, J.R., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear systems. Math. Comput. 31, 163–179 (1977)
Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8(4), 639–655 (1971)
Byrd, R., Nocedal, J., Waltz, R.: KNITRO: an integrated package for nonlinear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization. Springer Series in Nonconvex Optimization and Its Applications, vol. 83, pp. 35–59. Springer, New York (2006)
Cafieri, S., D’Apuzzo, M., Marino, M., Mucherino, A., Toraldo, G.: Interior point solver for large-scale quadratic programming problems with bound constraints. J. Optim. Theory Appl. 129(1), 55–75 (2006)
Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D.: On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems. Comput. Optim. Appl. 38(1), 27–45 (2007)
Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D.: Stopping criteria for inner iterations in inexact potential reduction methods: a computational study. Comput. Optim. Appl. 36(2–3), 165–193 (2007)
Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D., Toraldo, G.: Convergence analysis of an inexact potential reduction method for convex quadratic programming. J. Optim. Theory Appl. 135(3), 355–366 (2007)
Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D.: On the use of an approximate constraint preconditioner in a potential reduction algorithm for quadratic programming. In: Cutello, V., Fotia, G., Puccio, L. (eds.) Applied and Industrial Mathematics in Italy II. Series on Advances in Mathematics for Applied Sciences, vol. 75, pp. 220–230. World Scientific, Singapore (2000)
Carpenter, T., Shanno, D.N.: An interior point method for quadratic programs based on conjugate projected gradients. Comput. Optim. Appl. 2(1), 5–28 (1993)
Cheng, S., Higham, N.: A modified Cholesky algorithm based on a symmetric indefinite factorization. SIAM J. Matrix Anal. Appl. 20(2), 513–561 (1998)
Conn, A., Gould, N.I.M., Orban, D., Toint, P.L.: A primal-dual trust-region algorithm for non-convex nonlinear programming. Math. Program. Ser. B 87(2), 215–249 (2000)
Dembo, R., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26(2), 190–212 (1983)
Dembo, R., Eisentat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(3), 400–408 (1982)
Dollar, H.S.: Constraint-style preconditioners for regularized saddle-point problems. SIAM J. Matrix Anal. Appl. 29(2), 672–684 (2007)
Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J. Sci. Comput. 27(5), 1555–1572 (2006)
Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems. SIAM J. Matrix Anal. Appl. 28(1), 170–189 (2006)
Dollar, H.S., Gould, N.I.M., Schilders, W., Wathen, A.J.: Using constraint preconditioners with regularized saddle-point systems. Comput. Optim. Appl. 36(2–3), 249–270 (2007)
Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)
Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10(8), 673–688 (2003)
Fletcher, R.: Factorizing symmetric indefinite matrices. Linear Algebra Appl. 14(3), 257–272 (1976)
Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math. 43(1–2), 91–107 (2002)
Forsgren, A., Gill, P.E., Murray, W.: On the identification of local minimizers in inertia-controlling methods for quadratic programming. SIAM J. Matrix Anal. Appl. 12(4), 730–746 (1991)
Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)
Forsgren, A., Gill, P.E., Griffin, J.: Iterative solution of augmented systems arising in interior methods. SIAM J. Optim. 18(2), 666–690 (2007)
Freund, R.W., Jarre, F.: A QMR-based interior-point algorithm for solving linear programs. AT&T Bell Laboratories and Institute für Angewandte Mathematik und Statistik, Tech. Rep. (1995)
Freund, R., Nachtigal, N.: QMR: a quasi-minimal residual method for non Hermitian linear systems. Numer. Math. 60(3), 315–339 (1991)
Freund, R., Nachtigal, N.: Software for simplified Lanczos and QMR algorithms. Appl. Numer. Math. 19(3), 319–341 (1995)
Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29(1), 58–81 (2003). See also http://www.cs.wisc.edu/~swright/ooqp/
Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, New York (1981)
Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., Wright, M.H.: On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method. Math. Program. 36(2), 183–209 (1986)
Gill, P.E., Murray, W., Wright, M.H.: Numerical Linear Algebra and Optimization, vol. I. Addison-Wesley, Reading (1990)
Gill, P.E., Murray, W., Ponceleon, B.D., Saunders, M.A.: Preconditioners for indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl. 13(1), 292–311 (1992)
Golub, G.H., Greif, C.: Techniques for solving general KKT systems. SCCM Program, Computer Science Dept., Stanford University, SCCM-00-11 (2000)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Gondzio, J.: HOPDM. A fast LP solver based on a primal-dual interior point method. Eur. J. Oper. Res. 85, 221–225 (1995)
Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of interior point methods for optimization. School of Mathematics, University of Edinburgh, Tech. Rep. MS-04-004 (December 2004), revised in July 2005
Gondzio, J., Grothey, A.: Parallel interior point solver for structured quadratic programs: application to financial planning problems. Ann. Oper. Res. 152(1), 319–339 (2007)
Gondzio, J., Hager, W.W., Toraldo, G. (eds.): Special Issue on Linear Algebra Issues Arising in Interior Point Methods. Comput. Optim. Appl. 36(2–3) (2007)
Gould, N.I.M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem. Math. Program. 32(1), 90–99 (1985)
Gould, N.I.M., Toint, P.L.: SQP methods for large-scale nonlinear programming. In: Powell, M., Scholtes, S. (eds.) System Modelling and Optimization: Methods, Theory and Applications, pp. 149–178. Kluwer, Dordrecht (2000)
Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the Lanczos methods. SIAM J. Optim. 9(2), 504–525 (1999)
Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput. 23(4), 1376–1395 (2001)
Gould, N.I.M., Orban, D., Toint, P.L.: Numerical methods for large-scale nonlinear optimization. Acta Numer. 14, 299–361 (2005)
Higham, N.J., Cheng, S.: Modifying the inertia of matrices arising in optimization. Linear Algebra Appl. 275–276, 261–279 (1998)
IMA Conference on Numerical Linear Algebra and Optimisation, University of Birmingham, UK September 13–15, 2007, http://www.ima.org.uk/Conferences/numlinalg/numlinalghome.htm
International Conference on Numerical Optimization and Numerical Linear Algebra, Lhasa, Tibet, China, August 8–12, 2005, http://lsec.cc.ac.cn/~yyx/nlao2005.html
Ito, S.: Inexact implementation of interior point algorithms for optimal control problems. Lect. Notes Numer. Appl. Anal. 14, 245–248 (1995)
Karmakar, N., Ramakrishnan, K.: Computational results of an interior point algorithm for large scale linear programming. Math. Program. 52(1–3), 555–586 (1991)
Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 (2000)
Lin, C.-J., Moré, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21(1), 24–45 (1999)
Lukšan, L., Vlček, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5(3), 219–247 (1998)
Lukšan, L., Matonoha, C., Vlček, J.: Interior-point method for non-linear non-convex optimization. Numer. Linear Algebra Appl. 11(5–6), 431–453 (2004)
Mehrotra, S.: Implementations of affine scaling methods: approximate solutions of systems of linear equations using preconditioned conjugate gradient method. ORSA J. Comput. 4(2), 102–118 (1992)
Mittelmann, H.D.: Decision tree for optimization software. http://plato.asu.edu/guide.html (2007)
Mizuno, S., Kojima, M., Todd, M.J.: Infeasible-interior-point primal-dual potential-reduction algorithms for linear programming. SIAM J. Optim. 5(1), 52–67 (1995)
MOSEK ApS: The MOSEK optimization tools version 3.1 (Revision 28). Users manual and reference (2002). See also http://www.mosek.com/
NEOS Guide: Optimization software. http://www-fp.mcs.anl.gov/OTC/Guide/SoftwareGuide/
Nocedal, J.: On the solution of very large nonlinear optimization problems. Talk at the Eighth SIAM Conference on Optimization, Stockholm, 2005
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operation Research. Springer, Berlin (1999)
O’Leary, D.: Symbiosis between linear algebra and optimization. J. Comput. Appl. Math. 123(1–2), 447–465 (2000)
Oliveira, A., Sorensen, D.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra Appl. 394(1), 1–24 (2005)
Optimization Online home page, http://www.optimization-online.org/
Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer. Linear Algebra Appl. 7(7–8), 585–616 (2000)
Portugal, L., Resende, M., Veiga, G., Judice, J.: An efficient implementation of the infeasible primal-dual network flow method. AT & T Bell Laboratories, New Jersey, Tech. Rep. (1994)
Rozloznik, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368–391 (2002)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)
Schnabel, R.B., Eskow, E.: A revised modified Cholesky factorization algorithm. SIAM J. Optim. 9(4), 1135–1148 (1999)
SIAM Conference on Optimization, Minisymposium MS10: Numerical Linear Algebra Issues in Interior Point Methods, Stockholm, May 15–19, 2005, http://www.siam.org/meetings/op05/
Silvester, D., Wathen, A.J.: Fast iterative solution of stabilized stokes systems. Part II: Using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994)
Simoncini, V., Szyld, D.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14(1), 1–59 (2007)
Vanderbei, R.J.: Symmetric quasi-definite matrices. SIAM J. Optim. 5(1), 100–113 (1995)
Vanderbei, R.J.: An interior point code for quadratic programming. Optim. Methods Softw. 11–12, 451–484 (1999)
Vanderbei, R.J., Shanno, D.N.: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13(1–3), 231–252 (1999)
Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Wright, M.H.: Ill-conditioning and computational error in primal-dual interior methods for nonlinear programming. SIAM J. Optim. 9(1), 84–111 (1998)
Wright, S.J.: Stability of augmented system factorizations in interior point methods. SIAM J. Matrix Anal. Appl. 18(1), 191–222 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
D’Apuzzo, M., De Simone, V. & di Serafino, D. On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods. Comput Optim Appl 45, 283–310 (2010). https://doi.org/10.1007/s10589-008-9226-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-008-9226-1