Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Anti load disturbance method for AC servo motor power system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

A dimensionality reduction load torque observed is designed to provide compensation control for the motor with the observation value of load torque converted over for the problem that load disturbance decreases the control precision of servo system. A three-loop mathematical model is established for the servo control system. Use of two-/three-order optimal model theory contributed to the derivation of the tuning formula for three-loop control parameters. A simulation model is established for the space vector control of AC servo system. The simulation experiment validates that the tuned three-loop parameter provides the system with good dynamic performance. An experiment platform is built. The load sudden change experiment of the motor demonstrates the feasibility that torque compensation control improves the control precision of servo system in the presence of load disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Xiao, Q., Zhang, X.: A new AC servo motor load disturbance method. Adv. Sci. Technol. 2016, 313–317 (2006)

    Google Scholar 

  2. Iezawa, M., Imagi, A., Tomisawa, M.: High-precision control of AC servo motor positioning systems by friction compensation. JSME Int. J. 59(568), 3811–3816 (2008)

    Google Scholar 

  3. Kim, P.H., Sin, S.H., Baek, H.L., et al.: Speed control of AC servo motor using neural networks. In: International Conference on Electrical Machines and Systems, vol. 2, pp. 691–694. IEEE Xplore (2001)

  4. Rogers, E., Owens, D.H., Werner, H., et al.: Norm-optimal iterative learning control with application to problems in accelerator-based free electron lasers and rehabilitation robotics. Eur. J. Control 16(5), 497–522 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dong, Q.D., Vu, T.T., Han, H.C., et al.: Neuro-fuzzy control of interior permanent magnet synchronous motors. J. Electr. Eng. Technol. 8(6), 1439–1450 (2013)

    Article  Google Scholar 

  6. Cheng, S., Huang, Y.Y., Chou, H.H.: Dual robust controller design for high power AC servo drive. In: ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, pp. 97–102. IEEE Computer Society (2008)

  7. Liang, J., Hu, Y., Lu, W.: Anti-disturbance adaptive control of permanent magnet AC servo system. Trans. China Electrotech. Soc. 26(10), 174–180 (2011)

    Google Scholar 

  8. Ito, K., Takahashi, H., Ikeo, S.: Comparative study of robust control for a water hydraulic servo motor system: 2nd report: disturbance observer and/or sliding mode control design approach. Trans. Jpn. Hydraul. Pneum. Soc. 38(2), 21–28 (2007)

    Google Scholar 

  9. Lu, W., Hu, Y., Liang, J., et al.: Anti-disturbance adaptive control for permanent magnet synchronous motor servo system. Proc. CSEE 31(3), 75–81 (2011)

    Google Scholar 

  10. Yoshitsugu, J., Inoue, K., Nakaoka, M.: Load speed observer-based fuzzy auto-tuning implementation for AC speed servo system with two-mass mechanical motion system-experimental verification. In: Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, vol. 1, no. 2, pp. 645–652 (1999)

  11. Yoshitsugu, J., Inoue, K., Nakaoka, M.: Load speed observer-based fuzzy auto-tuning implementation for AC speed servo system with two-mass mechanical motion system-experimental verification. In: Industry Applications Conference, 1999. Thirty-Fourth IAS Meeting. Conference Record of the IEEE, vol. 1, pp. 645–652 (2002)

  12. Abdulhay, E., Mohammed, M.A., Ibrahim, D.A., Arunkumar, N., Venkatraman, V.: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J. Med. Syst. (2018). https://doi.org/10.1007/s10916-018-0912-y

    Google Scholar 

  13. Abdulhay, E., Arunkumar, N., Narasimhan, K., Vellaiappan, E., Venkatraman, V.: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Fut. Gener. Comput. Syst. (2018). https://doi.org/10.1016/j.future.2018.02.009

    Google Scholar 

  14. Abdulhay, E., Elamaran, V., Arunkumar, N., Venkatraman, V.: Fault-tolerant medical imaging system with quintuple modular redundancy (QMR) configurations. J. Ambient Intell. Hum. Comput. (2018). https://doi.org/10.1007/s12652-018-0748-9

    Google Scholar 

  15. Vardhana, M., Arunkumar, N., Abdulhay, E., Ramirez-Gonzalez, G.: Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cognit. Syst. Res. 50, 10–14 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The Natural Science Foundation of China under Grant No. 51275453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoliang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Zhou, X. Anti load disturbance method for AC servo motor power system. Cluster Comput 22 (Suppl 1), 2273–2283 (2019). https://doi.org/10.1007/s10586-018-2724-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2724-8

Keywords

Navigation