Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A time-indexed LP-based approach for min-sum job-shop problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we propose two time-indexed IP formulations for job-shop scheduling problems with a min-sum objective. The first model has variables associated to job scheduling patterns. The exponential number of variables calls for a column generation scheme which is carried out by a dynamic programming procedure. The second model is of network flow type with side constraints. This model can be strengthened by adding cutting inequalities of clique type. It turns out that the two models are equivalent, since the dual of the second formulation is equivalent to the compact dual of the first model. However, they require significantly different solution approaches and may behave differently in terms of computing time and memory usage. Good upper bounds are found by a heuristic procedure that randomly generates schedules from fractional solutions. These features allow for an effective pruning of the branch-and-bound tree and narrowing the gap between lower and upper bounds. However, the size of both models is critically affected by the time-indexed formulation which may heavily slow down the computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job-shop scheduling. Management Science, 34, 391–401.

    Article  Google Scholar 

  • Back, J. C., Feng, T. K., & Watson, J.-P. (2011). Combining constraint programming and local search for job-shop scheduling. INFORMS Journal on Computing, 23(1). doi: 10.1287/ijoc.1100.0388

  • Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling. Berlin: Springer.

    Google Scholar 

  • Baptiste, P., Flamini, M., & Sourd, F. (2008). Lagrangian bounds for just-in-time job-shop scheduling. Computers & Operations Research, 35, 906–915.

    Article  Google Scholar 

  • Blażewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: conventional and new solution techniques. European Journal of Operational Research, 93, 1–33.

    Article  Google Scholar 

  • Brailsford, S. C., Potts, C. N., & Smith, B. M. (1999). Constraint satisfaction problems: algorithms and applications. European Journal of Operational Research, 119, 557–581.

    Article  Google Scholar 

  • Brucker, P. (2007a) Scheduling Algorithms (5th ed.). Berlin: Springer.

    Google Scholar 

  • Brucker, P. (2007b). The job-shop problem: old and new challenges. In P. Baptiste, G. Kendall, A. Munier-Kordon, & F. Sourd (Eds.), Proceedings of the MISTA conference 2007 (pp. 15–22).

    Google Scholar 

  • Carr, R. D., & Lancia, G. (2002). Compact vs exponential-size LP relaxations. Operations Research Letters, 30(1), 57–65.

    Article  Google Scholar 

  • Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., & Wein, J. (1996). Improved scheduling algorithms for minsum criteria. In Proceedings of the 23rd international colloquium on automata, languages and programming (pp. 646–657). Berlin: Springer.

    Google Scholar 

  • Chen, A., & Luh, P. (2003). An alternative framework to Lagrangian relaxation approach for job shop scheduling. European Journal of Operational Research, 149, 499–512.

    Article  Google Scholar 

  • Chen, H., Chu, C., & Proth, J. M. (1998). An improvement of the Lagrangean relaxation approach for job shop scheduling: a dynamic programming method. IEEE Transactions on Robotics and Automation, 14, 786–795.

    Article  Google Scholar 

  • Della Croce, F., Ghirardi, M., & Tadei, R. (2002). An improved branch-and-bound algorithm for the two machine total completion time flow shop problem. European Journal of Operational Research, 139, 293–301.

    Article  Google Scholar 

  • Dorndorf, U., Pesch, U. E., & Phan-Huy, T. (2002). Constraint propagation and problem decomposition: a preprocessing procedure for the job shop problem. Annals of Operation Research, 115, 125–145.

    Article  Google Scholar 

  • Dyer, M. E., & Wolsey, L. A. (1990). Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Mathematics, 26, 255–270.

    Article  Google Scholar 

  • Grötschel, M., Lovász, L., & Schrijver, A. (1993). Geometric algorithms and combinatorial optimization. Berlin: Springer.

    Google Scholar 

  • Jain, A. S., & Meeran, S. (1999). Deterministic job-shop scheduling: past, present and future. European Journal of Operational Research, 113, 390–434.

    Article  Google Scholar 

  • Lageweg, B. J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1977). Job-shop scheduling by implicit enumeration. Management Science, 34, 441–450.

    Article  Google Scholar 

  • Lancia, G., Rinaldi, F., & Serafini, P. (1999). A column generation approach to solve job-shop problems. In IFORS99 conference (p. 11). Final Program, Beijing, P.R. China, August 16–20.

    Google Scholar 

  • Lancia, G., Rinaldi, F., & Serafini, P. (2007). A compact optimization approach to solve job-shop problems. In P. Baptiste, G. Kendall, A. Munier-Kordon, & F. Sourd (Eds.), Proceedings of the MISTA conference 2007 (pp. 293–300).

    Google Scholar 

  • Maniezzo, V., Stützle, T., & Voßeds, S. (2010). Hybridizing metaheuristics and mathematical programming. Berlin: Springer.

    Google Scholar 

  • Martin, K. (1991). Using separation algorithms to generate mixed integer model reformulations. Operations Research Letters, 10, 119–128.

    Article  Google Scholar 

  • Nowicki, E., & Smutnicki, C. (2005). An advanced tabu search algorithm for the job shop problem. Journal of Scheduling, 8, 145–159.

    Article  Google Scholar 

  • Potts, C. N., & Strusevich, V. A. (2009). Fifty years of scheduling: a survey of milestones. The Journal of the Operational Research Society, 60, S41–S68.

    Article  Google Scholar 

  • Queyranne, M., & Sviridenko, M. (2002). Approximation algorithms for shop scheduling problems with minsum objective. Journal of Scheduling, 5, 287–305.

    Article  Google Scholar 

  • Savelsbergh, M. W. P., Uma, R. N., & Wein, J. (2005). An experimental study of LP-based approximation algorithms for scheduling problems. INFORMS Journal on Computing, 17, 123–136.

    Article  Google Scholar 

  • Vaessens, R. J. M., Aarts, E. H. L., & Lenstra, J. K. (1996). Job shop scheduling by local search. INFORMS Journal on Computing, 8, 302–317.

    Article  Google Scholar 

  • Van den Akker, J. M., Hoogeveen, H., & Van de Velde, S. (1997). Parallel machine scheduling by column generation. Operations Research, 47, 862–872.

    Article  Google Scholar 

  • Van den Akker, J. M., Huskens, C. A. J., & Savelsbergh, M. W. P. (2000). Time-indexed formulations for machine scheduling problems: column generation. INFORMS Journal on Computing, 12, 111–124.

    Article  Google Scholar 

  • Watson, J. P., Barbulescu, L., Howe, A. E., & Whitley, L. D. (1999) Algorithm performance and problem structure for flow-shop scheduling. In Proceedings of the sixteenth national conference on artificial intelligence (pp. 688–695).

    Google Scholar 

  • Zhang, C. Y., Li, P. G., Rao, Y. Q., & Guan, Z. L. (2008). A very fast TS/SA algorithm for the job shop scheduling problem. Computers & Operations Research, 35, 282–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lancia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancia, G., Rinaldi, F. & Serafini, P. A time-indexed LP-based approach for min-sum job-shop problems. Ann Oper Res 186, 175–198 (2011). https://doi.org/10.1007/s10479-010-0832-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0832-9

Keywords

Navigation