Abstract
Let Ω ⊂ ℝd be a compact convex set of positive measure. In a recent paper, we established a definiteness theory for cubature formulae of order two on Ω. Here we study extremal properties of those positive definite formulae that can be generated by a centroidal Voronoi tessellation of Ω. In this connection we come across a class of operators of the form \(L_n[f](\boldsymbol{x}):= \sum_{i=1}^n \phi_i(\boldsymbol{x})(f(\boldsymbol{y}_i) + \langle\nabla f(\boldsymbol{y}_i), \boldsymbol{x}-\boldsymbol{y}_i\rangle)\), where \(\boldsymbol{y}_1,\dots, \boldsymbol{y}_n\) are distinct points in Ω and {ϕ 1, ..., ϕ n } is a partition of unity on Ω. We present best possible pointwise error estimates and describe operators L n with a smallest constant in an L p error estimate for 1 ≤ p < ∞ . For a generalization, we introduce a new type of Voronoi tessellation in terms of a twice continuously differentiable and strictly convex function f. It allows us to describe a best operator L n for approximating f by L n [f] with respect to the L p norm.
Similar content being viewed by others
References
Brass, H.: Quadraturverfahren. Vandenhoeck & Ruprecht, Göttingen (1977)
Davis, P.J., Rabinowitz, P. : Methods of Numerical Integration (2nd edn.). Academic Press, Orlando (1984)
Du, Q., Faber, V., Gunzberger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)
Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)
Fejes Tóth, G.: A stability criterion to the moment theorem. Studia Sci. Math. Hungar. 38, 209–224 (2001)
Fejes Tóth, L.: Sur la représentation d’une population infinie par un nombre fini d’éléments. Acta Math. Acad. Sci. Hungar. 10, 299–304 (1959)
Gruber, P.M.: Über optimale Quantisierung. Math. Semesterberichte 49, 227–251 (2003)
Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)
Guessab, A., Nouisser, O., Schmeisser, G.: A definiteness theory for cubature formulae of order two. Constr. Approx. 24, 263–288 (2006)
Halmos, P.R.: Measure Theory. Van Nostrand, Princeton (1950)
Newman, D.J.: The hexagon theorem. IEEE Trans. Inform. Theory 21, 137–139 (1982)
Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Tomas Sauer.
Rights and permissions
About this article
Cite this article
Guessab, A., Schmeisser, G. Construction of positive definite cubature formulae and approximation of functions via Voronoi tessellations. Adv Comput Math 32, 25 (2010). https://doi.org/10.1007/s10444-008-9080-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-008-9080-9
Keywords
- Cubature formulae
- Positive definite formulae
- Multivariate approximation
- Partitions of unity
- Centroidal Voronoi tessellation
- Generalized Voronoi tessellation