Abstract
Our innate number sense cannot distinguish between two large exact numbers of objects (e.g., 45 dots vs 46). Configured groups (e.g., 10 blocks, 20 frames) are traditionally used in schools to represent large numbers. Previous studies suggest that these external representations make it easier to use symbolic strategies such as counting ten by ten, enabling humans to differentiate exactly two large numbers. The main hypothesis of this work is that configured groups also allow for a differentiation of large exact numbers, even when symbolic strategies become ineffective. In experiment 1, the children from grade 3 were asked to compare two large collections of objects for 5 s. When the objects were organized in configured groups, the success rate was over .90. Without this configured grouping, the children were unable to make a successful comparison. Experiments 2 and 3 controlled for a strategy based on non-numerical parameters (areas delimited by dots or the sum areas of dots, etc.) or use symbolic strategies. These results suggest that configured grouping enables humans to distinguish between two large exact numbers of objects, even when innate number sense and symbolic strategies are ineffective. These results are consistent with what we call “the configured group hypothesis”: configured groups play a fundamental role in the acquisition of exact numerical abilities.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ansari D, Lyons IM, van Eimeren L, Xu F (2007) Linking visual attention and number processing in the brain: the role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. J Cogn Neurosci. doi:10.1162/jocn.2007.19.11.1845
Barth H, La Mont K, Lipton J, Dehaene S, Kanwisher N, Spelke E (2006) Non-symbolic arithmetic in adults and young children. Cognition 98:199–222. doi:10.1016/j.cognition.2004.09.011
Burr DC, Anobile G, Turi M (2011) Adaptation affects both high and low (subitized) numbers under conditions of high attentional load. Seeing Perceiving 24(2):141–150. doi:10.1163/187847511X570097
Camos V (2003) Counting strategies from 5-years to adulthood: adaptation to structural features. Eur J Psychol Educ 18(3):251–265. doi:10.1007/BF03173247
Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4(5):e125. doi:10.1371/journal.pbio.0040125
Carey S (2009) Where our number concepts come from. J Philos 106(4):220–254. doi:10.5840/jphil2009106418
Chan WWL, Au TK, Tang J (2014) Strategic counting: a novel assessment of place-value understanding. Learn Instr 29:78–94. doi:10.1016/j.learninstruc.2013.09.001
Clements DH (1999) Subitizing: what is it? Why teach it? Teach Child Math 5:400–405
Cohen DJ, Sarnecka BW (2014) Children’s number-line estimation shows development of measurement skills (not number representations). Dev Psychol 50(6):1640–1652. doi:10.1037/a0035901
Davidson K, Eng K, Barner D (2012) Does learning to count involve a semantic induction? Cognition 123(1):162–173. doi:10.1016/j.cognition.2011.12.013
Dehaene S (2011) The number sense: how the mind creates mathematics, revised and updated edition. Oxford University Press, Oxford
Domahs F, Krinzinger H, Willmes K (2008) Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex 44:359–367. doi:10.1016/j.cortex.2007.08.001
Feigenson L, Halberda J (2008) Conceptual knowledge increases infants’ memory capacity. PNAS 105(29):9926–9930. doi:10.1073/pnas.0709884105
Frank MC, Barner D (2012) Representing exact number visually using mental abacus. J Exp Psychol Gen 141(1):134–149. doi:10.1037/a0024427
Fuson KC, Wearne D, Hiebert JC, Murray HG, Human PG, Olivier AI, Carpenter TP, Fennema E (1997) Children’s conceptual structures for multidigit numbers and methods of multidigit addition and subtraction. J Res Math Educ 28(2):130–162. doi:10.2307/749759
Gilmore CK, McCarthy SE, Spelke ES (2007) Symbolic arithmetic knowledge without instruction. Nature 447:589–591. doi:10.1038/nature05850
Halberda J, Feigenson L (2008) Developmental change in the acuity of the ‘‘number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev Psychol 44(5):1457–1465. doi:10.1037/a0012682
Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455:665–668. doi:10.1038/nature07246
Hyde DC (2011) Two systems of non-symbolic numerical cognition. Front Hum Neurosci 5, Article 150. doi:10.3389/fnhum.2011.00150
Hyde DC, Khanum S, Spelke ES (2014) Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition 131(1):92–107. doi:10.1016/j.cognition.2013.12.007
Ifrah G (2000) The Universal History of Numbers: from prehistory to the invention of the computer. Wiley, Hoboken
Izard V, Dehaene S (2008) Calibrating the mental number line. Cognition 106:1221–1247. doi:10.1016/j.cognition.2007.06.004
Izard V, Pica P, Spelke ES, Dehaene S (2008) Exact equality and successor function: two key concepts on the path towards understanding exact numbers. Philos Psychol 21(4):491–505. doi:10.1080/09515080802285354
Izard V, Streri A, Spelke ES (2014) Toward exact number: young children use one-to-one correspondence to measure set identity but not numerical equality. Cogn Psychol 72:27–53. doi:10.1016/j.cogpsych.2014.01.004
Leslie AM, Gelman R, Gallistel CR (2008) The generative basis of natural number concepts. Trends Cogn Sci 12(6):213–218. doi:10.1016/j.tics.2008.03.004
Link T, Huber S, Nuerk HC, Moeller K (2014) Unbounding the mental number line-new evidence on children’s spatial representation of numbers. Front Psychol 4, Article 1021. doi:10.3389/fpsyg.2012.00315
McGuire P, Kinzie MB, Berch DB (2012) Developing number sense in pre-k with five-frames. Early Child Educ J 40:213–222
Obersteiner A, Reiss K, Ufer S (2013) How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learn Instr 23:125–135. doi:10.1016/j.learninstruc.2012.08.004
Obersteiner A, Reiss K, Ufer S, Luwel K, Vershaffel L (2014) Do first graders make efficient use of external number representations? The case of the twenty-frame. Cogn Instr 32(4):353–373. doi:10.1080/07370008.2014.948681
Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Dehaene S, Zorzi M (2010) Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116(1):33–41. doi:10.1016/j.cognition.2010.03.012
Pietroski P, Lidz J, Hunter T, Halberda J (2009) The Meaning of ‘most’: semantics, numerosity and psychology. Mind Lang 24(5):554–585. doi:10.1111/j.1468-0017.2009.01374.x
Rosenberg RD, Feigenson L (2013) Infants hierarchically organize memory representations. Dev Sci 16(4):610–621. doi:10.1111/desc.12055
Rousselle L, Noël MP (2007) Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition 102(3):361–395
Sarnecka BW, Carey S (2008) How counting represents number: what children must learn and when they learn it. Cognition 108(3):662–674. doi:10.1016/j.cognition.2008.05.007
Sarnecka BW, Wright CE (2013) The idea of an exact number: children’s understanding of cardinality and equinumerosity. Cogn Sci 37(8):1493–1506. doi:10.1111/cogs.12043
Sato M, Cattaneo L, Rizzolatti G, Gallese V (2007) Number within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment. J Cogn Neurosci 19(4):684–693. doi:10.1162/jocn.2007.19.4.684
Sayers J, Andrews P, Björklund Boistrup L (2016) The role of conceptual subitising in the development of foundational number sense. In: Meaney T, Helenius O, Johansson ML, Lange T, Wernberg A (eds) Mathematics education in the early years. Results from the POEM2 Conference, 2014. Springer, New York, pp 371–394. doi:10.1007/978-3-319-23935-4
Starkey GS, McCandliss BD (2014) The emergence of “groupitizing” in children’s numerical cognition. J Exp Child Psychol 126:120–137. doi:10.1016/j.jecp.2014.03.006
Sweller J, Ayres P, Kalyuga S (2011) Cognitive load theory. Springer, New York
Vasilyeva M, Laski EV, Ermakova A, Lai W-F, Jeong Y, Hachigian A (2015) Reexamining the language account of cross-national differences in base-10 number representations. J Exp Child Psychol 129:12–25
Venkatraman V, Ansari D, Chee MWL (2005) Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia 43:744–753. doi:10.1016/j.neuropsychologia.2004.08.005
Vurpillot E (1968) The development of scanning strategies and their relation to visual differentiation. J Exp Child Psychol 6(4):632–650. doi:10.1016/0022-0965(68)90108-2
Acknowledgements
Jean-Luc Parmentelot, Sylvain Begue, Josette Suspène, Sylvaine Mailho, Nathalis Burgues-Gensel, Pierre Villenave, Anne Terrière, Véronique Perrier, Céline Burgues, Gaëlle Imbert, Laurent Icher, Mrs Ortis, Mrs Peyrou, Denis Caillard, Nathalie Le Goffic, Nathalie Precigout, Nathalie Corpet, Julie Rozières, Mrs Barral, Mrs Cornic, Valérie Buosi, Marie-Pierre Caldeira, Olivier Carmouze, Stéphanie Sauvage, Aurélie Cazottes, Muriel Abeille, Catalina Martin Joga, parents and their children.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: Thomas Shipley (Temple University); Reviewers: Elizabeth Toomarian (University of Wisconsin Madison).
English translations by Çaphaeur, caphaeur@gmail.com.
Rights and permissions
About this article
Cite this article
Miravete, S., Tricot, A., Kalyuga, S. et al. Configured-groups hypothesis: fast comparison of exact large quantities without counting. Cogn Process 18, 447–459 (2017). https://doi.org/10.1007/s10339-017-0826-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10339-017-0826-5