Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

In this paper, we outline the foundations of a general global optimisation strategy for the solution of multilevel hierarchical and general decentralised multilevel problems, based on our recent developments on multi-parametric programming and control theory. The core idea is to recast each optimisation subproblem, present in the hierarchy, as a multi-parametric programming problem, with parameters being the optimisation variables belonging to the remaining subproblems. This then transforms the multilevel problem into single-level linear/convex optimisation problems. For decentralised systems, where more than one optimisation problem is present at each level of the hierarchy, Nash equilibrium is considered. A three person dynamic optimisation problem is presented to illustrate the mathematical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anandalingman G (1988) A mathematical programming model of decentralized multi-level systems. J Opl Res Soc 39:1021–1033

    Article  Google Scholar 

  • Başar T (1975) Equilibrium solutions in two-person quadratic decision problems with static information structures. IEEE Trans Automatic Control 20(3):320–328

    Article  Google Scholar 

  • Başar T (1978) Decentralized multicriteria optimization of linear stochastic systems. IEEE Trans Automatic Control 23(2):233–243

    Article  Google Scholar 

  • Başar T, Olsder GJ (1982) Dynamic Noncooperative game theory. Academic, London

    Google Scholar 

  • Başar T, Selbuz H (1979) Closed-loop Stackelberg strategies with applications in the optimal control of multilevel systems. IEEE Trans Automatic Control 24(2):166–179

    Article  Google Scholar 

  • Choi SC, Desarbo WS, Harker PT (1990) Product positioning under price competition. Manage Sci 36(2):175–199

    Article  Google Scholar 

  • Clark PA (1983) Embedded optimization problems in chemical process design. PhD Thesis. Department of Chemical Engineering, Carnegie-Mellon University, Pittsburg

  • Cruz JB (1978) Leader-follower strategies for multilevel systems. IEEE Trans Automatic Control 23(2):244–255

    Article  Google Scholar 

  • Dua V, Papalexandri KP, Pistikopoulos EN (2004) Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J Global Optim 30:59–89

    Article  Google Scholar 

  • Dua V, Bozinis NA, Pistikopoulos EN (2002) A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput Chem Eng 26:715–733

    Article  Google Scholar 

  • Faísca NP, Kouramas KI, Pistikopoulos EN (2007a) Dynamic programming, Chap 7. Wiley-VCH. Weinheim

  • Faísca NP, Dua V, Saraiva PM, Rustem B, Pistikopoulos EN (2007b) Parametric global optimisation for bilevel programming. J Global Optim (in Press)

  • Fiacco AV(1976) Sensitivity analysis for nonlinear programming using penalty methods. Math Programm 10:287–311

    Article  Google Scholar 

  • Fiacco AV (1983) Introduction to sensitivity and stability analysis in nonlinear programming. Academic, New York

    Google Scholar 

  • Floudas CA (2000) Deterministic global optimization. Kluwer, Dordrecht

    Google Scholar 

  • Li M, Cruz JB, Simaan MA (2002) An approach to discrete-time incentive feedback stackelberg games. IEEE Trans Syst Man Cybern A: Syst Humans 32(4):472–481

    Article  Google Scholar 

  • Liu B (1998) Stackelberg–Nash equilibrium for multilevel programming with multiple followers using genetic algorithms. Comput Math Appl 36(7):79–89

    Article  Google Scholar 

  • McCormick GP (1976) Optimality criteria in nonlinear programming. SIAM-AMS Proc 1975(9):27

    Google Scholar 

  • Morari M, Arkun Y, Stephanopoulos G (1980) Studies in the synthesis of control structures for chemical processes. AIChE J 26:220–232

    Article  Google Scholar 

  • Nie P, Chen L, Fukushima M (2006) Dynamic programming approach to discrete time dynamic feedback stackelberg games with independent and dependent followers. Euro J Oper Res 169:310–328

    Article  Google Scholar 

  • Pistikopoulos EN, Georgiadis MC, Dua V (2007a) Multi-parametric programming: theory, algorithms, and applications, vol 1. Wiley-VCH, Weinheim

  • Pistikopoulos EN, Georgiadis MC, Dua V (2007b) Multi-parametric model-based control: theory and applications, vol 2. Wiley-VCH, Weinheim

  • Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M (2000) On-line optimization via off-line parametric optimization tools. Comput Chem Eng 24:183–188

    Article  Google Scholar 

  • Rodić AD, Vukobratović MK (1999) Contribution to the integrated control synthesis of road vehicles. IEEE Trans Control Syst Technol 7(1):64–78

    Article  Google Scholar 

  • Ruan GZ, Wang SY, Yamakamoto Y, Zhu SS (2004) Optimality conditions and geometric properties of linear multilevel programming problem with dominated objective functions. J Optim Theory Appl 123(2):409–429

    Article  Google Scholar 

  • Shih HS, Wen UP, Lee ES, Lan KM, Hsiao HC (2004) A neural network approach to multiobjective and multilevel programming problems. Comput Math Appl 48:95–108

    Article  Google Scholar 

  • Stephanopoulos G, Ng C (2000) Perspectives on the synthesis of plant-wide control structures. J Process Control 10:97–111

    Article  Google Scholar 

  • Tolwinski B (1981) Closed-loop stackelberg solution to a multistage linear-quadratic game. J Optim Theory Appl 34(4):485–501

    Article  Google Scholar 

  • Vicente LN (1992) Bilevel programming. Master’s Thesis. Department of Mathematics, University of Coimbra, Coimbra

  • Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: a bibliography review. J Global Optim 5(3):291–306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Pistikopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faísca, N.P., Saraiva, P.M., Rustem, B. et al. A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems. Comput Manag Sci 6, 377–397 (2009). https://doi.org/10.1007/s10287-007-0062-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-007-0062-z

Keywords

Navigation