Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Artificial Intelligence-driven Digital Cytology-based Cervical Cancer Screening: Is the Time Ripe to Adopt This Disruptive Technology in Resource-constrained Settings? A Literature Review

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Cervical cancer is still a public health scourge in the developing countries due to the lack of organized screening programs. Though liquid-based cytology methods improved the performance of cervical cytology, the interpretation still suffers from subjectivity. Artificial intelligence (AI) algorithms have offered objectivity leading to better sensitivity and specificity of cervical cancer screening. Whole slide imaging (WSI) that converts a glass slide to a virtual slide provides a new perspective to the application of AI, especially for cervical cytology. In the recent years, there have been a few studies employing various AI algorithms on WSI images of conventional or LBC smears and demonstrating differing sensitivity/specificity or accuracy at detection of abnormalities in cervical smears. Considering the interest in AI-based screening modalities, this well-timed review intends to summarize the progress in this field while highlighting the research gaps and providing future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.

    Article  PubMed  Google Scholar 

  2. He WQ, Li C. Recent global burden of cervical cancer incidence and mortality, predictors, and temporal trends. Gynecol Oncol. 2021;163:583–592.

    Article  PubMed  Google Scholar 

  3. Pollack AE, Tsu VD. Preventing cervical cancer in low-resource settings: building a case for the possible. Int J Gynaecol Obstet. 2005;89 Suppl 2:S1–3.

    Article  PubMed  Google Scholar 

  4. Zhao Y, Bao H, Ma L, Song B, Di J, Wang L, Gao Y, Ren W, Wang S, Wang HJ, Wu J. Real-world effectiveness of primary screening with high-risk human papillomavirus testing in the cervical cancer screening programme in China: a nationwide, population-based study. BMC Med. 2021;19:164.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rebolj M, Rimmer J, Denton K, Tidy J, Mathews C, Ellis K, Smith J, Evans C, Giles T, Frew V, Tyler X, Sargent A, Parker J, Holbrook M, Hunt K, Tidbury P, Levine T, Smith D, Patnick J, Stubbs R, Moss S, Kitchener H. Primary cervical screening with high risk human papillomavirus testing: observational study. BMJ 2019; 364:l240.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nambu Y, Mariya T, Shinkai S, Umemoto M, Asanuma H, Sato I, Hirohashi Y, Torigoe T, Fujino Y, Saito T. A screening assistance system for cervical cytology of squamous cell atypia based on a two-step combined CNN algorithm with label smoothing. Cancer Med. 2022;11:520–529.

    Article  PubMed  Google Scholar 

  7. Sanyal P, Barui S, Deb P, Sharma HC. Performance of a convolutional neural network in screening liquid based cervical cytology smears. J Cytol. 2019;36:146–151.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hou X, Shen G, Zhou L, Li Y, Wang T, Ma X. Artificial intelligence in cervical cancer screening and diagnosis. Front Oncol. 2022;12:851367.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allahqoli L, Laganà AS, Mazidimoradi A, Salehiniya H, Günther V, Chiantera V, Karimi Goghari S, Ghiasvand MM, Rahmani A, Momenimovahed Z, Alkatout I. Diagnosis of cervical cancer and pre-cancerous lesions by artificial intelligence: a systematic review. Diagnostics (Basel). 2022;12:2771.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mango LJ. Computer-assisted cervical cancer screening using neural networks. Cancer Lett. 1994;77:155–62.

    Article  CAS  PubMed  Google Scholar 

  11. Wilbur DC, Black-Schaffer WS, Luff RD, Abraham KP, Kemper C, Molina JT, Tench WD. The Becton Dickinson FocalPoint GS Imaging System: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions. Am J Clin Pathol. 2009;132:767–75.

    Article  PubMed  Google Scholar 

  12. Bolger N, Heffron C, Regan I, Sweeney M, Kinsella S, McKeown M, Creighton G, Russell J, O'Leary J. Implementation and evaluation of a new automated interactive image analysis system. Acta Cytol. 2006;50:483–91.

    Article  PubMed  Google Scholar 

  13. Biscotti CV, Dawson AE, Dziura B, Galup L, Darragh T, Rahemtulla A, Wills-Frank L. Assisted primary screening using the automated ThinPrep Imaging System. Am J Clin Pathol. 2005;123:281–7.

    Article  PubMed  Google Scholar 

  14. Pantanowtiz L, Bui MM. Computer-assisted pap test screening. In: Bui MM, Pantanowitz L, editors. Modern techniques in cytopathology. Monogr Clin Cytol. Basel, Switzerland: Karger; 2020. Vol. 25; p. 67–74.

  15. Chantziantoniou N. BestCyte® primary screening of 500 ThinPrep Pap Test thin-layers: 3 cytologists’ interobserver diagnostic concordance with predicate manual microscopy relative to truth reference diagnoses defining NILM, ASCUS+, LSIL+, and ASCH+ thresholds for specificity, sensitivity, and equivalency grading. J Pathol Inform. 2023;14:100182.

    Article  PubMed  PubMed Central  Google Scholar 

  16. James G, Witten D, Hastie T, Tibshirani R, eds. An Introduction to Statistical Learning: With Applications in R. New Yors, Springer; 2013.

    Google Scholar 

  17. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137–1149.

    Article  PubMed  Google Scholar 

  18. Bhatt AR, Ganatra A, Kotecha K. Cervical cancer detection in Pap smear whole slide images using convNet with transfer learning and progressive resizing. PeerJ Comput. Sci. 2021;7:e348.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holmström O, Linder N, Kaingu H, Mbuuko N, Mbete J, Kinyua F, Törnquist S, Muinde M, Krogerus L, Lundin M, Diwan V, Lundin J. Point-of-care digital cytology with artificial intelligence for cervical cancer screening in a resource-limited setting. JAMA Netw Open. 2021;4:e211740.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang CW, Liou YA, Lin YJ, Chang CC, Chu PH, Lee YC, Wang CH, Chao TK. Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning. Sci Rep. 2021;11:16244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin H, Chen H, Wang X, Wang Q, Wang L, Heng PA. Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis. Med Image Anal. 2021;69:101955.

    Article  PubMed  Google Scholar 

  22. Li X, Xu Z, Shen X, Zhou Y, Xiao B, Li TQ. Detection of cervical cancer cells in whole slide images using deformable and global context aware faster RCNN-FPN. Curr Oncol. 2021;28:3585–3601.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu X, Li X, Ong K, Zhang W, Li W, Li L, Young D, Su Y, Shang B, Peng L, Xiong W, Liu Y, Liao W, Xu J, Wang F, Liao Q, Li S, Liao M, Li Y, Rao L, Lin J, Shi J, You Z, Zhong W, Liang X, Han H, Zhang Y, Tang N, Hu A, Gao H, Cheng Z, Liang L, Yu W, Ding Y. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nat Commun. 2021;12:3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng S, Liu S, Yu J, Rao G, Xiao Y, Han W, Zhu W, Lv X, Li N, Cai J, Wang Z, Feng X, Yang F, Geng X, Ma J, Li X, Wei Z, Zhang X, Quan T, Zeng S, Chen L, Hu J, Liu X. Robust whole slide image analysis for cervical cancer screening using deep learning. Nat Commun. 2021;12:5639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanavati F, Hirose N, Ishii T, Fukuda A, Ichihara S, Tsuneki M. A deep learning model for cervical cancer screening on liquid-based cytology specimens in whole slide images. Cancers (Basel). 2022;14:1159.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao M, Wu A, Song J, Sun X, Dong N. Automatic screening of cervical cells using block image processing. Biomed Eng Online. 2016;15:14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang HP, Cai D, Kong YQ, Ye H, Ma ZX, Lv HS, Tuo LR, Pan QJ, Liu ZH, Han X. Cervical cytology screening facilitated by an artificial intelligence microscope: a preliminary study. Cancer Cytopathol. 2021;129:693–700.

    Article  PubMed  Google Scholar 

  28. Bao H, Sun X, Zhang Y, Pang B, Li H, Zhou L, Wu F, Cao D, Wang J, Turic B, Wang L. The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: a population-based cohort study of 0.7 million women. Cancer Med. 2020;9:6896–6906.

  29. Wentzensen N, Lahrmann B, Clarke MA, Kinney W, Tokugawa D, Poitras N, Locke A, Bartels L, Krauthoff A, Walker J, Zuna R, Grewal KK, Goldhoff PE, Kingery JD, Castle PE, Schiffman M, Lorey TS, Grabe N. Accuracy and efficiency of deep-learning-based automation of dual stain cytology in cervical cancer screening. J Natl Cancer Inst. 2021;113:72–79.

    Article  PubMed  Google Scholar 

  30. Evans AJ, Brown RW, Bui MM, Chlipala EA, Lacchetti C, Milner DA, Pantanowitz L, Parwani AV, Reid K, Riben MW, Reuter VE, Stephens L, Stewart RL, Thomas NE. Validating whole slide imaging systems for diagnostic purposes in pathology. Arch Pathol Lab Med. 2022;146:440–450.

    Article  PubMed  Google Scholar 

  31. Kumar N, Gupta R, Gupta S. Whole slide imaging (WSI) in pathology: current perspectives and future directions. J Digit Imaging. 2020;33:1034–1040.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Antonini P, Santonicco N, Pantanowitz L, Girolami I, Rizzo PC, Brunelli M, Bellevicine C, Vigliar E, Negri G, Troncone G, Fadda G, Parwani A, Marletta S, Eccher A. Relevance of the College of American Pathologists guideline for validating whole slide imaging for diagnostic purposes to cytopathology. Cytopathology. 2022. https://doi.org/10.1111/cyt.13178. Epub ahead of print.

  33. Hwang TJ, Kesselheim AS, Vokinger KN. Lifecycle regulation of artificial intelligence- and machine learning-based software devices in medicine. JAMA. 2019;322:2285–2286.

    Article  PubMed  Google Scholar 

  34. Vokinger KN, Mühlematter UJ, Becker A, Boss A, Reutter MA,Szucs TD. Artificial intelligence und machine learning in dermedizin. Available at https://jusletter.weblaw.ch/juslissues/2017/903/artificial-intellige_da49225588.html__ONCE&login=false (Accessed November 21, 2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ruchika Gupta, Neeta Kumar, Sompal Singh, Neelam Sood, and Sanjay Gupta. The first draft of the manuscript was written by Ruchika Gupta and Shivani Bansal, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanjay Gupta.

Ethics declarations

Ethics Approval

This is a literature review. Hence, ethics approval was not sought.

Consent to Participate

The study does not involve human participants. Consent to participate was not applicable.

Consent for Publication

The authors affirm that there were no human research participants and consent to publish does not apply.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Kumar, N., Bansal, S. et al. Artificial Intelligence-driven Digital Cytology-based Cervical Cancer Screening: Is the Time Ripe to Adopt This Disruptive Technology in Resource-constrained Settings? A Literature Review. J Digit Imaging 36, 1643–1652 (2023). https://doi.org/10.1007/s10278-023-00821-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00821-0

Keywords

Navigation